Skip to main content
U.S. flag

An official website of the United States government

Sediment and nutrient retention on a reconnected floodplain of an Upper Mississippi River tributary, 2013–2018

August 4, 2022

The connection of rivers with their floodplains has been greatly reduced in agricultural drainage basins, especially in the Upper Mississippi River Basin. The restriction of the Mississippi River from its floodplain has reduced the sediment trapping and nutrient deposition capabilities of the floodplain, exacerbating water quality problems in the river and in downstream waterbodies. A small part of the Maquoketa River, a tributary to the Upper Mississippi River, was permanently reconnected to its floodplain in 2010 when a levee failure resulted in breaches in two locations. This study quantified the water quality benefits of that reconnection from October 2013 through September 2018. As part of the study, data from groundwater monitoring wells were used to determined hydraulic connectivity and surface-water/groundwater mixing; soil samples were collected in the floodplain to quantify floodplain sediment and nutrient retention potential during postflood and dry, interflood periods; and sensors were placed in the Maquoketa River to quantify total suspended solids, nitrogen, and phosphorus concentrations and loads.

The floodplain aquifer in the study area had low hydraulic gradients toward the Maquoketa (mean of 0.017) and Mississippi Rivers (mean of 0.0029) and reducing water-quality conditions (dissolved oxygen less than 1.0 milligram per liter [mg/L] and nitrate less than 0.04 mg/L as nitrogen) capable of denitrification. A specific conductance-based mixing indicated precipitation was the predominate source of groundwater; however, specific conductance-based mixing analysis was unable to distinguish between the river or direct precipitation as the source.

The floodplain was fully inundated five times during the study: in June–July 2014, March 2015, January 2017, February 2018, and September 2018. During the March 2015 flood (the only inundation event with sufficient duration to leave quantifiable sediment deposition in the study area), the equivalent of 0.91 percent of the nitrate load and 3.8 percent of the phosphorus load was deposited as sediment on the floodplain. Potential nitrogen losses on the floodplain because of denitrification ranged from 250 kilograms per day (kg/d) as nitrogen in March 2015 to 668 kg/d as nitrogen in October 2014. Potential denitrification rates indicate that when the soil is inundated, inorganic nitrogen present in the soil and in the water column is rapidly denitrified. Soil phosphorus measurements indicated that floodplain soils contain a mean of 365 milligrams per kilogram as phosphorus but still have the capacity to remove phosphorus from flood waters of the Maquoketa River depending on the surface water phosphorus concentration. Results from this study indicate that restoration of even small river-floodplain connections can improve water quality in the Upper Mississippi River.

Publication Year 2022
Title Sediment and nutrient retention on a reconnected floodplain of an Upper Mississippi River tributary, 2013–2018
DOI 10.3133/sir20225030
Authors Lynn A. Bartsch, Rebecca M. Kreiling, Lance R. Gruhn, Jessica D. Garrett, William B. Richardson, Greg M. Nalley
Publication Type Report
Publication Subtype USGS Numbered Series
Series Title Scientific Investigations Report
Series Number 2022-5030
Index ID sir20225030
Record Source USGS Publications Warehouse
USGS Organization Iowa Water Science Center; Upper Midwest Environmental Sciences Center; Upper Mississippi Science Center; Central Midwest Water Science Center