Skip to main content
U.S. flag

An official website of the United States government

A spatially explicit, empirical estimate of tree-based biological nitrogen fixation in forests of the United States

February 7, 2020

Quantifying human impacts on the nitrogen (N) cycle and investigating natural ecosystem N cycling depend on the magnitude of inputs from natural biological nitrogen fixation (BNF). Here, we present two bottom‐up approaches to quantify tree‐based symbiotic BNF based on forest inventory data across the coterminous United States and SE Alaska. For all major N‐fixing tree genera, we quantify BNF inputs using (1) ecosystem N accretion rates (kg N ha−1 yr−1) scaled with spatial data on tree abundance and (2) percent of N derived from fixation (%Ndfa) scaled with tree N demand (from tree growth rates and stoichiometry). We estimate that trees fix 0.30–0.88 Tg N yr−1 across the study area (1.4–3.4 kg N ha−1 yr−1). Tree‐based N fixation displays distinct spatial variation that is dominated by two genera, Robinia (64% of tree‐associated BNF) and Alnus (24%). The third most important genus, Prosopis, accounted for 5%. Compared to published estimates of other N fluxes, tree‐associated BNF accounted for 0.59 Tg N yr−1, similar to asymbiotic (0.37 Tg N yr−1) and understory symbiotic BNF (0.48 Tg N yr−1), while N deposition contributed 1.68 Tg N yr−1 and rock weathering 0.37 Tg N yr−1. Overall, our results reveal previously uncharacterized spatial patterns in tree BNF that can inform large‐scale N assessments and serve as a model for improving tree‐based BNF estimates worldwide. This updated, lower BNF estimate indicates a greater ratio of anthropogenic to natural N inputs, suggesting an even greater human impact on the N cycle.

Publication Year 2020
Title A spatially explicit, empirical estimate of tree-based biological nitrogen fixation in forests of the United States
DOI 10.1029/2019GB006241
Authors Anika Staccone, Wenying Liao, Steven Perakis, Jana Compton, Christopher L. Clark, Duncan Menge
Publication Type Article
Publication Subtype Journal Article
Series Title Global Biogeochemical Cycles
Index ID 70214305
Record Source USGS Publications Warehouse
USGS Organization Forest and Rangeland Ecosystem Science Center