Skip to main content
U.S. flag

An official website of the United States government

Turbidity as a control on phytoplankton biomass and productivity in estuaries

January 1, 1987

In many coastal plain estuaries light attenuation by suspended sediments confines the photic zone to a small fraction of the water column, such that light limitation is a major control on phytoplankon production and turnover rate. For a variety of estuarine systems (e.g. San Francisco Bay, Puget Sound, Delaware Bay, Hudson River plume), photic-zone productivity can be estimated as a function of phytoplankton biomass times mean irradiance of the photic zone. Net water column productivity also varies with light availability, and in San Francisco Bay net productivity is zero (estimated respiratory loss of phytoplankton balances photosynthesis) when the ratio of photic depth (Zp) to mixed depth (Zm) is less than about 0.2. Thus whenever Zp:Zm < 0.2, the water column is a sink for phytoplankton production. Much of the spatial and temporal variability of phytoplankton biomass or productivity in estuaries is explained by variations in the ratio of photic depth to mixed depth. For example, phytoplankton blooms often coincide with stratification events that reduce the depth of the surface mixed layer (increase Zp:Zm). Shallow estuarine embayments (high Zp:Zm) are often characterized by high phytoplankton biomass relative to adjacent channels (low Zp:Zm). Many estuaries have longitudinal gradients in productivity that mirror the distribution of suspended sediments: productivity is low near the riverine source of sediments (low Zp:Zm) and increases toward the estuary mouth where turbidity decreases. Some of these generalizations are qualitative in nature, and detailed understanding of the interaction between turbidity and estuarine phytoplankton dynamics requires improved understanding of vertical mixing rates and phytoplankton respiration.

Publication Year 1987
Title Turbidity as a control on phytoplankton biomass and productivity in estuaries
DOI 10.1016/0278-4343(87)90042-2
Authors J. E. Cloern
Publication Type Article
Publication Subtype Journal Article
Series Title Continental Shelf Research
Index ID 70014152
Record Source USGS Publications Warehouse
USGS Organization San Francisco Bay-Delta; Pacific Regional Director's Office