Mission Areas

National Climate Change and Wildlife Science Center

Programs L2 Landing Page

The National Climate Change and Wildlife Science Center (NCCWSC) acts as the managing entity for the eight Department of the Interior Climate Science Centers (CSCs). The NCCWSC and CSCs partner with natural & cultural resource managers to provide science that helps fish, wildlife, ecosystems & the communities they support adapt to climate change.

Learn More About Our Work

Explore Projects & Data

Explore Projects & Data

The NCCWSC and CSCs develop data and tools that address the informational needs of natural and cultural resource managers. Projects cover topics that address the impacts of climate change on fish, wildlife, ecosystems, & the communities they support.

Search

Stay Updated

Stay Updated

Our BioClimate Newsletter shares our latest news on webinars, events, publications, funding opportunities, and other items of interest from the NCCWSC and the CSCs. Updates are sent out every two weeks.

Sign Up

Learn More

Browse through our site to learn more about our research projects, education and training initiatives, partnerships, funding opportunities, and much more!

News & Announcements

Project Search

Data Policy

Webinars

Partners

Education & Training

Contact Us

Discover More

News

An American pika collects grass and flowers to stockpile its winter food supplies.
July 12, 2017

A new study by the U.S. Geological Survey and its partners has identified situations and conditions where some animals display behavioral flexibility – the ability to rapidly change behavior in response to short – or long-term environmental changes such as climate variability. 

Flooding in the Western Swinomish Reservation
June 12, 2017

For the Swinomish people of northwestern Washington, water is life. But this symbiotic relationship between man and nature has been disrupted, and increasingly threatened, by sea-level rise and changes in Northwestern storm and rainfall patterns.

Image: A Mule Deer Released After Being Radio-Collared
May 3, 2017

Migratory mule deer in Wyoming closely time their movements to track the spring green-up, providing evidence of an underappreciated foraging benefit of migration, according to a study by University of Wyoming and U.S. Geological Survey scientists at the Wyoming Cooperative Fish and Wildlife Research Unit.

Our research looks at how intense droughts, sea-level rise, extreme storms, and other consequences of climate change are affecting wildlife, ecosystems, and human communities that depend on these resources. We strive to develop data and tools that are usable and that directly address the informational needs of natural & cultural resource managers.

Search our Research Projects
Filter Total Items: 7
The Yampa River at Dinosaur National Monument.
August 29, 2016

Adapting to climate change and variability, and their associated impacts, requires integrating scientific information into complex decision making processes. Recognizing this challenge, there have been calls for federal climate change science to be designed and conducted in a way that ensures the research translates into effective decision support. Despite the existence of many decision...

NCCWSC website screen shot.
June 27, 2016

Information Science staff help the National Office of the National Climate Change and Wildlife Science Centers and individual Climate Science Centers with a variety of project and data management activities, including storing, managing, and distributing datasets; building and maintaining metadata; discovering datasets; and delivering their data and metadata as web services through various...

Image: Drakes Peak
April 25, 2016

Long periods without rainfall can alter the delicate balance of natural ecosystems and harm many fish and wildlife species. The term “ecological drought” encompasses and emphasizes these environmental consequences. The CSCs and NCCWSC are working with partners to understand the regional effects of ecological drought, identify potential threats to valued resources, and prioritize research...

Image: Eskimo Volunteers Helping with Banding
April 25, 2016

The CSCs and NCCWSC are working with tribes and indigenous communities to better understand their specific vulnerabilities to climate change and to help them adapt to these impacts. This work is conducted through research projects, outreach events (ie. cultural festivals and tribal schools), training workshops, stakeholder meetings, youth internships and other coordination activities.

Smallmouth Bass School of Fish
April 25, 2016

The CSCs and the NCCWSC are committed to supporting young and early career scientists and managers in learning about and conducting research on the climate change impacts to fish and wildlife, developing skills in science communications, user interactions, and stakeholder engagement, and developing a network of peers to support their career development.

Young bull moose laying in field.
April 24, 2016

The work and research initiatives at the CSCs and NCCWSC is strongly guided by our partners. We work closely with federal agencies, state and local governments, American Indian tribes and indigenous communities, nongovernmental organizations, academic institutions, and the private sector to make important decisions about science focus areas and funding priorities.

Birds in a wetland
April 12, 2016

Science projects are the backbone of the NCCWSC and CSCs. Our projects are based on the needs of our partners, including land managers, natural/cultural resource managers, tribal and indigenous communities. Our research is complemented by our other efforts that include training the next generation of scientists and conducting national synthesis projects that cross CSC boundaries.

The images below show examples of the types of wildlife, habitats, and landscapes our researchers are studying. Our projects help resource managers and decision-makers protect these important animals and places. Learn more about our work and the ways that climate change will impact wildife and ecosystems by browsing through our website or checking out our library of webinar recordings.

Explore Our Webinars
Filter Total Items: 59
July 17, 2017

This webinar was conducted on July 17, 2017 as part of the USGS National Climate Change and Wildlife Science Center Climate Change Science and Management Webinar Series, held in partnership with FWS National Conservation Training Center. 

Webinar Summary: Sagebrush steppe rangelands comprise a large fraction of North America, but they are in decline due to increases in wildfire and invasive plants, factors that relate strongly to climate and weather variability. When intact, plant communities in sagebrush steppe appear well adapted to cold wet winters and hot dry summers along with low predictability of annual precipitation. However, disturbances such as large fire or conversion of sites to exotic annual grassland sensitize basic ecosystem functions to climate and weather variability, often leading to substantial losses in soil and ecosystem stability. Management responses to wildfire such as seeding, planting, or treatment of exotic invasive plants are pivotal opportunities for hindering or reversing the degradation. However, restoring desirable perennials is often challenging in these environments due to the climate and weather systems. Published and preliminary findings point to several seeding and planting strategies and technologies that are likely to increase success, particularly those that directly address seed and plant adaptation. The presentation gives a brief overview of how these factors are being addressed in research and adaptive management.

May 18, 2017

This webinar was recorded on May 18, 2017 as part of the Climate Change Science and Management Webinar Series, held in partnership by the USGS National Climate Change and Wildlife Science Center and the USFWS National Conservation Training Center. 

Webinar Summary: Estimates of streamflow are critical to inform natural resource managers about water availability for both human and ecological needs. Monitoring streamflow using a streamgage provides information about the amount and timing of surface water resources. However, hydrologic models can be used to provide estimates of streamflow in the absence of streamflow information and assess the potential effects of changes in climate and land cover on hydrologic response. The USGS has developed a National Hydrologic Model to support coordinated, comprehensive and consistent hydrologic model development, and facilitate the application of hydrologic simulations within the conterminous United States. Jacob LaFontaine's research developed hydrologic simulations for historical and potential future climate and land cover to characterize watersheds across the southeastern United States. These hydrologic simulations provide estimates of water availability and streamflow characteristics and provide a methodology for further National Hydrologic Model development.

April 27, 2017

Natural resource managers face increasing challenges in dealing with drought. As competition for water increases between its various uses (water supply, energy demands, ecological services, recreation, and other environmental and ecological needs), our ability to forecast the onset and termination of drought becomes ever more important. This is particularly true given forecasts of the increasing frequency and intensity of drought suggested by climate change models. 

This talk presents a brief review of history of drought forecasting and its application in resource management. Drought indicators currently in practice are explored as well as emerging indicators. Additionally, the fundamentals of drought planning are reviewed, particularly the challenges of developing robust policies that work well when future conditions are difficult to predict. The challenges in applying these forecasts associated with the forecast accuracy are discussed, as will other limitations. Finally, the potential for improving our ability to predict regional drought in the near future are explored. 

This webinar was recorded on April 27, 2017 as part of the Climate Change Science and Management Webinar Series, held in partnership by the USGS National Climate Change and Wildlife Science Center and the USFWS National Conservation Training Center. 

March 21, 2017

This webinar was recorded as part of the Climate Change Science and Management Webinar Series (hosted in partnership by the USGS National Climate Change and Wildlife Science Center and FWS National Conservation Training Center). Webinar Summary: Accurate information on the atmospheric evaporative demand (i.e., thirst of the atmosphere) and the land-surface evaporative response (i.e., moisture supply on the land to meet the evaporative demand) is extremely important to assessing water stress on the land surface. In this webinar, the presenters will introduce real-time high resolution (1-10km) monitoring products of atmospheric evaporative demand and land-surface evaporative response models that are currently available to users. They will also discuss the physical relationships between these systems, as well as the potential of the monitoring products discussed above to markedly improve scientists and managers understanding of drought processes (i.e., onset, evolution, persistence and dissipation), and develop a more robust drought early warning framework.
 

February 28, 2017

The distribution of water on the landscape influences many ecological functions such as the distribution of vegetation, soil development and the cycle of chemical nutrients. All of these functions are subject to change as a result of variations in the duration of soil water saturation and flow of water through the distributed channel networks of watersheds. The landscape of the Pacific coastal temperate rainforest (PCTR) or the Gulf of Alaska Region are dominated by numerous landforms. The intensity and duration of the cold, wet climate is the driving force that maintains the persistent features such as vegetation and soils on these landforms. Currently, soil moisture serves as an indicator of function, but prediction of soil moisture across the landscape is limited due to the lack of quantitative assessment of the distribution of groundwater in the PCTR. The goal of this research was to establish a spatially explicit soil moisture map and a groundwater prediction model for a portion of the Gulf of Alaskan drainage basin.

The webinar was recorded as a part of the Climate Change Science and Management Webinar Series, hosted by USGS National Climate Change and Wildlife Science Center and the FWS National Conservation Training Center.

January 17, 2017

This webinar presentation was conducted as part of the Climate Change Science and Management Webinar Series, hosted in partnership by the USGS National Climate Change and Wildlife Science Center and the FWS National Conservation Training Center. Webinar Description: Drought imposes many tangible impacts on human food and water supplies, but the effects of drought can actually go much deeper. Long periods without rainfall can alter the delicate balance of natural ecosystems and harm many fish and wildlife species. The term “ecological drought” encompasses and emphasizes these environmental consequences (including losses in plant growth, increases in fire and insect outbreaks, altered rates of carbon, nutrient, and water cycling, and local species extinctions). Scientists anticipate that the frequency of ecological drought in many areas across the country will increase in the future as temperatures rise and precipitation patterns become more variable. However, very little information is currently known about the magnitude or persistence of potential impacts. The Climate Science Centers and NCCWSC, along with a number of partners, are actively working to understand the regional effects of ecological drought, identify potential threats to valued resources, and prioritize research efforts that consider potential drought effects on ecological systems. View the webinar recording to learn more about the science and impacts of ecological drought!
 

2016 (approx.)

The Department of the Interior Pacific Islands Climate Science Center and the University of Hawaiʻi at Hilo developed and hosted a Climate Change Boot Camp that showcased collaborative research efforts within UH Hilo’s Tropical Conservation Biology and Environmental Science graduate program that are driven by local natural resource managers across Hawaiʻi Island. The event took place at the Kiolokaʻa Ranger Station in Kaʻū, August 9-12, 2016.

If you are interested in exploring the University of Hawaiʻi at Hilo’s manager-based research program, the Manager Climate Corps, please visit: http://hilo.hawaii.edu/picsc/.

The DOI Pacific Islands Climate Science Center, is managed by the USGS National Climate Change and Wildlife Science Center. The center is one of eight that provides scientific information to help natural resource managers respond effectively to climate change.

November 15, 2016

Approximately 25 to 50 percent of a living tree is made up of water, depending on the species and time of year. The water stored in trees has previously been considered just a minor part of the water cycle, but a study by University of Alaska Fairbanks scientists with support from the DOI Alaska Climate Science Center shows otherwise. Their research is the first to show that the uptake of snowmelt water by deciduous trees represents a large and previously overlooked aspect of the water balance in boreal watersheds. Calculating the amount of water stored by deciduous trees is important. The area occupied by deciduous trees in the boreal forest (or snow forest) is expected to increase 1 to 15 percent by the end of this century, and the absorption of snowmelt could also then increase. Quantifying tree water storage is important for understanding hydrology, tree response to drought and the related factors of tree water use, soil moisture and climate. Watch the webinar recording to learn more about the methodology and findings from this project! This webinar was conducted as part of the Climate Change Science and Management Webinar Series held in partnership by the USGS National Climate Change and Wildlife Science Center and the FWS National Conservation Training Center. 
 

Jordan Pond, Acadia National Park
2016 (approx.)

Jordan Pond, a mountain lake in Acadia National Park formed by a glacier and known for its clear waters. In the distance are two small peaks known as “The Bubbles”. Alex Bryan, a climatologist with the DOI Northeast Climate Science Center (managed by USGS) is implementing scenario planning techniques to help Acadia National Park identify potential future climate conditions, enabling managers to start planning for how to best protect the park's resources now.

Waterfall Bridge, Acadia National Park
2016 (approx.)

Waterfall Bridge is one of Acadia National Park's 16 historic stone bridges, located along the carriage road network. Each bridge has unique features, specifically designed to blend in with the surrounding landscape. Alex Bryan, a climatologist with the DOI Northeast Climate Science Center (managed by USGS) is implementing scenario planning techniques to help Acadia National Park identify potential future climate conditions, enabling managers to start planning for how to best protect the park's resources, like this historic bridge, now.

Sunrise on Cadillac Mountain, Acadia National Park
2016 (approx.)

Sunrise on Cadillac Mountain, the highest point on the North Atlantic seaboard. Between October and March, it is the first place to view the sunrise in the United States. Alex Bryan, a climatologist with the DOI Northeast Climate Science Center (managed by USGS) is implementing scenario planning techniques to help Acadia National Park identify potential future climate conditions, enabling managers to start planning for how to best protect the park's resources now.

October 25, 2016

This webinar was conducted as part of the Climate Change Science and Management Webinar Series, co-hosted by the USGS National Climate Change and Wildlife Science Center and the FWS National Conservation Training Center. Webinar Description: One-half of North American imperiled species live in subterranean habitats, which largely are associated with karst (a type of landscape underlain by limestone that has been eroded over time, producing caves, sinkholes, towers and other formations). Further, karst aquifers provide a unique opportunity to investigate the effects of climate change on groundwater at timescales of human interest because these aquifers exhibit large variability in hydrologic responses, such as springflow (i.e. groundwater discharge) and water-table level (i.e. level below which the ground is completely saturated with water), at short timescales. By linking a global climate, regional climate, and hydrologic model, researchers can obtain input for a tool to measure species vulnerability. Modifying the tool to explicitly incorporate hydrologic factors such as spring flow and water-table level brings us a step closer to a more realistic assessment of species vulnerability in karst settings. This research initiative is supported by the South Central Climate Science Center through the project, Karst and Climate Change: Understanding Linkages Between Climate, Water Resources, and Ecosystems.
 

Check out our news and announcements to stay up-to-date on webinars, events, publications, funding opportunities, and other items of interest.

Browse More News Items
Filter Total Items: 39
An American pika collects grass and flowers to stockpile its winter food supplies.
July 12, 2017

A new study by the U.S. Geological Survey and its partners has identified situations and conditions where some animals display behavioral flexibility – the ability to rapidly change behavior in response to short – or long-term environmental changes such as climate variability. 

Flooding in the Western Swinomish Reservation
June 12, 2017

For the Swinomish people of northwestern Washington, water is life. But this symbiotic relationship between man and nature has been disrupted, and increasingly threatened, by sea-level rise and changes in Northwestern storm and rainfall patterns.

Image: A Mule Deer Released After Being Radio-Collared
May 3, 2017

Migratory mule deer in Wyoming closely time their movements to track the spring green-up, providing evidence of an underappreciated foraging benefit of migration, according to a study by University of Wyoming and U.S. Geological Survey scientists at the Wyoming Cooperative Fish and Wildlife Research Unit.

Close-up of non-hybridized westslope cutthroat trout in Montana
April 4, 2017

Hybridization, or the interbreeding of species, is increasing between native and invasive trout across the northern Rocky Mountains, according to a study released Tuesday by the U.S. Geological Survey and partners.

Wading birds feed near wooden posts marking a research site in a Louisiana salt marsh
January 25, 2017

Changes in rainfall and temperature are predicted to transform wetlands in the Gulf of Mexico and around the world within the century, a new study from the USGS and the University of Texas Rio Grande Valley concludes.

Aerial view of the caldera of Mt Tambora, island of Sumbawa, Indonesia.
January 18, 2017

Hundreds of articles have been written about the largest volcanic eruption in recorded history, at Indonesia’s Mt. Tambora just over 200 years ago. But for a small group of New England-based researchers, one more Tambora story needed to be told, one related to its catastrophic effects in the Gulf of Maine that may carry lessons for intertwined human-natural systems facing climate change today.

Yukon River freezing up at Pilot Station, AK
November 30, 2016

New USGS-led research shows that permafrost loss due to a rapidly warming Alaska is leading to significant changes in the freshwater chemistry and hydrology of Alaska’s Yukon River Basin with potential global climate implications. Such permafrost degradation is already fundamentally transforming the way that high-latitude, Northern Hemisphere ecosystems function.    

Painting - the construction of James Fort, by Sidney E. King
November 28, 2016

The Interior Department’s Climate Science Centers, managed by USGS, are helping the NPS pinpoint the specific impacts of climate change on parks and their cultural and natural resources. Doing so will help managers answer a critical question: which resources will require human intervention to ensure their continued existence?

The Cape Lookout Lighthouse, Cape Lookout National Seashore
November 18, 2016

The Interior Department’s Climate Science Centers, managed by USGS, are helping the National Park Service pinpoint the specific impacts of climate change on parks and their cultural and natural resources. Doing so will help managers answer a critical question: which resources will require human intervention to ensure their continued existence?

Learn more about our research projects and initiatives by contacting us or checking out our various social media pages! 

Connect & Interact