Skip to main content
U.S. flag

An official website of the United States government

Water, Coasts and Ice

Warming temperatures and shifting weather patterns are causing major changes in water and ice availability, sea levels, and aquatic nutrient cycles across the country. CASC-supported scientists are examining how water, ice, and coastal ecosystems and communities across the United States are being affected by climate change. Browse our projects below or use our Project Explorer database to explore our science on this topic.

Filter Total Items: 165

Science to Inform Management of Floodplain Conservation Lands in a Changing World

Recent extreme floods on the Mississippi and Missouri Rivers have motivated decision-makers and resource managers to expaned floodplain conservation lands. Within Missouri, there are more than 85,000 acres of public conservation lands in large-river floodplains. Floodplain lands are highly dynamic and challenging to manage, particularly climatic conditions change. These lands have the potential to
link

Science to Inform Management of Floodplain Conservation Lands in a Changing World

Recent extreme floods on the Mississippi and Missouri Rivers have motivated decision-makers and resource managers to expaned floodplain conservation lands. Within Missouri, there are more than 85,000 acres of public conservation lands in large-river floodplains. Floodplain lands are highly dynamic and challenging to manage, particularly climatic conditions change. These lands have the potential to
Learn More

Yukon River Basin Indigenous Observation Network

The hydrology of the Yukon River Basin has changed over the last several decades as evidenced by a variety of discharge, gravimetric, and geochemical analyses. The Indigenous Observation Network (ION), a community-based project, was initiated by the Yukon River Inter-Tribal Watershed Council and USGS. Capitalizing on existing USGS monitoring and research infrastructure and supplementing USGS col
link

Yukon River Basin Indigenous Observation Network

The hydrology of the Yukon River Basin has changed over the last several decades as evidenced by a variety of discharge, gravimetric, and geochemical analyses. The Indigenous Observation Network (ION), a community-based project, was initiated by the Yukon River Inter-Tribal Watershed Council and USGS. Capitalizing on existing USGS monitoring and research infrastructure and supplementing USGS col
Learn More

Assessing the Drivers of Water Availability for Historic and Future Conditions in the South Central U.S.

Understanding the changes in the distribution and quantity of, and demand for, water resources in response to a changing climate is essential to planning for, and adapting to, future climatic conditions. In order to plan for future conditions and challenges, it is crucial that managers understand the limitations and uncertainties associated with the characterization of these changes when making ma
link

Assessing the Drivers of Water Availability for Historic and Future Conditions in the South Central U.S.

Understanding the changes in the distribution and quantity of, and demand for, water resources in response to a changing climate is essential to planning for, and adapting to, future climatic conditions. In order to plan for future conditions and challenges, it is crucial that managers understand the limitations and uncertainties associated with the characterization of these changes when making ma
Learn More

Developing a VisTrails Platform for Modeling Streamflow Hydrology and Projecting Climate Change Effects on Streamflow

Hydrologic models are used throughout the world to forecast and simulate streamflow, inform water management, municipal planning, and ecosystem conservation, and investigate potential effects of climate and land-use change on hydrology. The USGS Modeling of Watershed Systems (MoWS) group is currently developing the infrastructure for a National Hydrologic Model (NHM) to support coordinated, compre
link

Developing a VisTrails Platform for Modeling Streamflow Hydrology and Projecting Climate Change Effects on Streamflow

Hydrologic models are used throughout the world to forecast and simulate streamflow, inform water management, municipal planning, and ecosystem conservation, and investigate potential effects of climate and land-use change on hydrology. The USGS Modeling of Watershed Systems (MoWS) group is currently developing the infrastructure for a National Hydrologic Model (NHM) to support coordinated, compre
Learn More

Establishing a Foundation for Understanding Climate Change Impacts on Coastal Wetland Ecosystems

Coastal wetlands are one of the most economically valuable ecosystems in the world. In the United States, the ecosystem services provided by wetlands are worth billions of dollars and include flood protection, erosion control, seafood, water quality enhancement, carbon storage, recreation, and wildlife habitat. Unfortunately, these ecosystems are also highly sensitive to changing climate condition
link

Establishing a Foundation for Understanding Climate Change Impacts on Coastal Wetland Ecosystems

Coastal wetlands are one of the most economically valuable ecosystems in the world. In the United States, the ecosystem services provided by wetlands are worth billions of dollars and include flood protection, erosion control, seafood, water quality enhancement, carbon storage, recreation, and wildlife habitat. Unfortunately, these ecosystems are also highly sensitive to changing climate condition
Learn More

FishTail: A Tool to Inform Conservation of Stream Fish Habitats in the Northeast

Human impacts occurring throughout the DOI Northeast Climate Science Center, including urbanization, agriculture, and dams, have multiple effects on streams in the region which support economically valuable stream fishes. Changes in climate are expected to lead to additional impacts in stream habitats and fish assemblages in multiple ways, including changing stream water temperatures. To manage st
link

FishTail: A Tool to Inform Conservation of Stream Fish Habitats in the Northeast

Human impacts occurring throughout the DOI Northeast Climate Science Center, including urbanization, agriculture, and dams, have multiple effects on streams in the region which support economically valuable stream fishes. Changes in climate are expected to lead to additional impacts in stream habitats and fish assemblages in multiple ways, including changing stream water temperatures. To manage st
Learn More

Impacts of Climate Change on Water Flows in the Red River Basin

The Red River Basin is a vital source of water in the South Central U.S., supporting ecosystems, drinking water, agriculture, tourism and recreation, and cultural ceremonies. Stretching from the High Plains of New Mexico eastward to the Mississippi River, the Red River Basin encompasses parts of five states – New Mexico, Texas, Oklahoma, Arkansas, and Louisiana. Further, 74% of the jurisdictional
link

Impacts of Climate Change on Water Flows in the Red River Basin

The Red River Basin is a vital source of water in the South Central U.S., supporting ecosystems, drinking water, agriculture, tourism and recreation, and cultural ceremonies. Stretching from the High Plains of New Mexico eastward to the Mississippi River, the Red River Basin encompasses parts of five states – New Mexico, Texas, Oklahoma, Arkansas, and Louisiana. Further, 74% of the jurisdictional
Learn More

Informing Conservation Management Decision-Making at Coastal National Wildlife Refuges

Coastal National Wildlife Refuges (NWRs) provide a myriad of beneficial services, including buffering storm surge, improving water quality, supporting commercial fisheries, and providing habitat for imperiled wildlife and plants. Yet in the last century, coastal ecosystems in the eastern U.S. have been severely altered by human development activities as well as sea-level rise and more frequent ext
link

Informing Conservation Management Decision-Making at Coastal National Wildlife Refuges

Coastal National Wildlife Refuges (NWRs) provide a myriad of beneficial services, including buffering storm surge, improving water quality, supporting commercial fisheries, and providing habitat for imperiled wildlife and plants. Yet in the last century, coastal ecosystems in the eastern U.S. have been severely altered by human development activities as well as sea-level rise and more frequent ext
Learn More

Projecting the Future of Headwater Streams to Inform Management Decisions

There is growing evidence that headwater stream ecosystems are especially vulnerable to changing climate and land use, but managers are challenged by the need to address these threats at a landscape scale, often through coordination with multiple management agencies and landowners. This project sought to provide an example of cooperative landscape decision-making by addressing the conservation of
link

Projecting the Future of Headwater Streams to Inform Management Decisions

There is growing evidence that headwater stream ecosystems are especially vulnerable to changing climate and land use, but managers are challenged by the need to address these threats at a landscape scale, often through coordination with multiple management agencies and landowners. This project sought to provide an example of cooperative landscape decision-making by addressing the conservation of
Learn More

Science to Support Adaptive Landscape Planning and Decision Making for Gopher Tortoise Conservation

The gopher tortoise (Gopherus polyphemus) is a familiar species across the southeastern Coastal Plain, but its population has declined significantly over the decades. One reason is that much of its primary habitat, sparse stands of mature pine, has been replaced by development or agriculture. Another is that periodic ground fires, which are important for providing needed forage for the tortoise, h
link

Science to Support Adaptive Landscape Planning and Decision Making for Gopher Tortoise Conservation

The gopher tortoise (Gopherus polyphemus) is a familiar species across the southeastern Coastal Plain, but its population has declined significantly over the decades. One reason is that much of its primary habitat, sparse stands of mature pine, has been replaced by development or agriculture. Another is that periodic ground fires, which are important for providing needed forage for the tortoise, h
Learn More

Structured Decision-Making as a Tool for Coastal Restoration: A Case Study on Ship Island, Mississippi

Barrier islands protect mainland areas from storm surge, but can erode over time and require restoration. Ship Island, a barrier island off the coast of Mississippi, provides an example of this: the island was battered by Hurricane Camille in 1969 and split into two separate islands. As part of the Mississippi Coastal Improvements Program, the U.S. Army Corps of Engineers plans to use approximatel
link

Structured Decision-Making as a Tool for Coastal Restoration: A Case Study on Ship Island, Mississippi

Barrier islands protect mainland areas from storm surge, but can erode over time and require restoration. Ship Island, a barrier island off the coast of Mississippi, provides an example of this: the island was battered by Hurricane Camille in 1969 and split into two separate islands. As part of the Mississippi Coastal Improvements Program, the U.S. Army Corps of Engineers plans to use approximatel
Learn More

Understanding and Projecting Changes in Climate, Hydrology, and Ecology in the Great Basin for the Next 30 Years

This project links climate, hydrological, and ecological changes over the next 30 years in a Great Basin watershed. In recent years, climate variability on annual and decadal time scales has been recognized as greater than commonly perceived with increasing impacts on ecosystems and available water resources. Changes in vegetation distribution, composition and productivity resulting from climate c
link

Understanding and Projecting Changes in Climate, Hydrology, and Ecology in the Great Basin for the Next 30 Years

This project links climate, hydrological, and ecological changes over the next 30 years in a Great Basin watershed. In recent years, climate variability on annual and decadal time scales has been recognized as greater than commonly perceived with increasing impacts on ecosystems and available water resources. Changes in vegetation distribution, composition and productivity resulting from climate c
Learn More