Karl B Haase, Ph.D.

Dissolved Gases are important chemical tracers in groundwater systems. They provide information about groundwater age, aquifer mixing, and the climate conditions when water entered the aquifer. 


 I am a research chemist studying methods of groundwater age determination. I am generally interested in the relationships between atmospheric gases and groundwater, as mediated by the interactions in the vadose zone, the layer of the ground that water must pass through before it enters an aquifer. I am also the techinical lead of the USGS Groundwater Dating Lab (https://water.usgs.gov/lab).

I have a background in experimental atmospheric chemistry, having worked with several groups on topics including ocean fertilization, biogeochemical impacts to atmospheric chemisty, oceanic emissions of halocarbons to the atmosphere, insturment validation studies, long term observations, anthropogenic emissions, and air quality measurements.


Dissolved Gases are important chemical tracers in groundwater systems. They provide information about groundwater age, aquifer mixing, and the climate conditions when water entered the aquifer. This information can be used to study issue of groundwater availability, quality, and quantity. Additionally direct measurements of these properties can be used to validate groundwater model output and improve model algorithms, allowing more accurate assessment of aquifer systems. Currently, I am developing a mass spectrometer to measure dissolved fixed gases (O2, N2, He, Ne, Ar, Kr, and Xe) to assess groundwater recharge temperatures more accurately, and I am studying the behavior of various anthropogenic compounds in the groundwater system.

In persuit of these research goals, I have developed novel and customized analytical systems and sensors for research and production operations. Among others, these include an automated economical quadruople mass spectrometer based noble gas analyzer, a dual channel GC-FID-AED system for measuring trace hydrofluorocarbons (as novel groundwater age tracers) and trace hydrocarbons (to better understand hydrocarbon geochemistry, a highly automated multi-port noble gas analyzer for tritium-helium dating and noble gas concentrations in groundwater, a self contained low cost pCO2 sensor, and GC-TCD system for measurements of He/Ne in groundwater samples.

Orcid Profile: https://orcid.org/0000-0002-6897-6494

Research Gate: https://www.researchgate.net/profile/Karl_Haase2

Google Scholar: https://scholar.google.com/citations?user=GTpa3WMAAAAJ&hl=en&oi=ao


  1. Haase, K.B., Kozar, M.D., Mcadoo, M.A., Casile, G.C., Steffy, L., Risser, D.W., Heilweil, V.M., and Mumford, A.C., 2018, Dataset of trace dissolved hydrocarbons in surface water and groundwater in North Dakota, Pennsylvania, Virginia, and West Virginia between 2014 and 2017: U.S. Geological Survey data release, https://doi.org/10.5066/P9RDPWXO. IP-096792
  2. Akob, D. M., Sutton, J.M. Fierst, J.L., Haase, K.B., Baesman, S., Luther, G.W., Miller, G.L., Oremland, R.S., 2018, Acetylenotrophy: a hidden but ubiquitous microbial metabolism?, FEMS Microbiology Ecology, Volume 94, Issue 8, fiy103, https://doi.org/10.1093/femsec/fiy103. IP-903123
  3. Haase, K.B., Casile, G.C., Kauble, R.K., Andraski, B.J., Stonestrom, D.A., Simon, N.S., Rybicki, N.B., and Sanford, W.E., 2018, Data from Laboratory and Field Tests of an Economical, Environmentally Sealed, Self-Contained pCO2 Sensor for Environmental Studies: U.S. Geological Survey data release, https://doi.org/10.5066/F7CJ8CP3 IP-093534
  4. Busenberg, Eurybiades, Plummer, L.N., Doughten, M.W., Widman, P.K., Casile, G.C., Wayland, J.E., Nelms, D.L., Coplen T.B., and Haase, K.B., 2017, A multi-year record of chemical and isotopic composition of water from springs of the Shenandoah National Park, Virginia: U.S. Geological Survey data release, https://doi.org/10.5066/F7GH9H50.
  5. Orem, W., Varonka, M., Crosby, L., Haase, K., Loftin, K., Hladik, M., Akob, D. M., Tatu, C., Mumford, A., Jaeschke, J., Bates, A., Schell, T., and Cozzarelli, I.: Organic geochemistry and toxicology of a stream impacted by unconventional oil and gas wastewater disposal operations, Applied Geochemistry, (2016) 80, 155-167, doi: https://doi.org/10.1016/j.apgeochem.2017.02.016, 2017.
  6. Cozzarelli, I. M., Skalak, K. J., Kent, D. B., Engle, M. A., Benthem, A., Mumford, A. C., Haase, K., Farag, A., Harper, D., Nagel, S. C., Iwanowicz, L. R., Orem, W. H., Akob, D. M., Jaeschke, J. B., Galloway, J., Kohler, M., Stoliker, D. L., and Jolly, G. D.: Environmental signatures and effects of an oil and gas wastewater spill in the Williston Basin, North Dakota, Science of The Total Environment, 579, 1781-1793, doi: https://doi.org/10.1016/j.scitotenv.2016.11.157, 2017.
  7. Akob, D. M., Baesman, S. M., Sutton, J. M., Fierst, J. L., Mumford, A. C., Shrestha, Y., Poret-Peterson, A. T., Bennett, S., Dunlap, D. S., Haase, K. B., and Oremland, R. S.: Detection of Diazotrophy in the Acetylene-Fermenting Anaerobe, Pelobacter strain SFB93, Applied and Environmental Microbiology, doi: 10.1128/aem.01198-17, 2017.
  8. Sanford, W. E., Casile, G. and Haase, K. B. (2015) Dating base flow in streams using dissolved gases and diurnal temperature changes, Water Resour. Res., 51. 9790–9803. IP-067414, BA 8/12/2015 
  9. Haase, K. B., Busenberg, E. (2014)  Groundwater Dating With Atmospheric Halogenated Compounds. In: Encyclopedia of Dating Methods, Rink, W.J.; Thompson J., Eds. Springer Netherlands:; pp 1-17 IP-058125, BA 4/28/2014
  10. Haase, K.B., Busenberg, E., Plummer, L.N., Casile, G., Sanford, W.E., (2014). Measurements of HFC-134a and HCFC-22 in groundwater and unsaturated-zone air: Implications for HFCs and HCFCs as dating tracers. Chemical Geology, 385: 117-128. IP-056547, BA 7/17/2014 
  11. Haase, K. B., Kenne W. C., Pszenny A. A. P., Mayne H. R., Talbot R. W., and Sive B. C. (2012). Calibration and intercomparison of acetic acid measurements using proton transfer reaction mass spectrometry (PTR-MS), Atmos. Meas. Tech.. 5, 2739-2750 IP-041862, BA 10/26/2012 
  12. Ambrose, J. L., Zhou, Y., Haase, K., Mayne, H. R., Talbot, R., and Sive, B. C. (2012): A gas chromatographic instrument for measurement of hydrogen cyanide in the lower atmosphere, Atmos. Meas. Tech., 5, 1229-1240, (PTR-MS data collection & QA/QC)
  13. Haase, K. B., Jordan, C., Mentis, E., Cottrell, L., Mayne, H. R., Talbot, R., and Sive, B. C. (2011). Changes in monoterpene mixing ratios during summer storms in rural New Hampshire (USA), Atmos. Chem. Phys., 11, 11465-11476, doi: 10.5194/acp-11-11465-2011. 
  14. Russo, R. S., White, M. L., Zhou, Y., Haase, K. B., Ambrose, J. L., Conway, L., Mentis, E., Talbot, R., and Sive, B. C. (2011). Spatial Variation, Sources and Emission Rates of Volatile Organic Compounds Over the Northeastern U.S., in: Air Quality-Models and Applications, edited by: Popovic, D., 13, InTech, 233-261, (2011). 
  15. Talbot, R., H. Mao, D. Feddersen, M. Smith, S. Y. Kim, B. Sive, K. Haase, J. Ambrose, Y. Zhou, and R. Russo (2011). Comparison of Particulate Mercury Measured with Manual and Automated Methods, Atmosphere, 2(1), 1-20.
  16. Haase, K. B. (2010). Calibration, Optimization, and Deployment of PTR-MS Instruments during the AIRMAP Project: Durham, NH, University of New Hampshire. Ph.D. Dissertation. 186 pg., 63 Figures, 12 Tables.
  17. Ambrose, J. L., Haase, K., Russo, R. S., Zhou, Y., White, M. L., Frinak, E. K., Jordan, C., Mayne, H. R., Talbot, R., and Sive, B. C. (2010). A comparison of GC-FID and PTR-MS toluene measurements in ambient air under conditions of enhanced monoterpene loading, Atmos. Meas. Tech., 3(4), 959-980. 
  18. Russo, R. S., Zhou, Y., Haase, K. B., Wingenter, O. W., Frinak, E. K., Mao, H., Talbot, R. W., and Sive, B. C (2010). Temporal variability, sources, and sinks of C1-C5 alkyl nitrates in coastal New England, Atmos. Chem. Phys., 10(4), 1865-1883. 
  19. Jordan, C., Fitz, E., Hagan, T., Sive, B., Frinak, E., Haase, K., Cottrell, L., Buckley, S., and Talbot, R. (2009). Long-term study of VOCs measured with PTR-MS at a rural site in New Hampshire with urban influences, Atmos. Chem. Phys., 9(14), 4677-4697. 
  20. White, M. L., Russo, R. S., Zhou, Y., Ambrose, J. L., Haase, K., Frinak, E. K., Varner, R. K., Wingenter, O. W., Mao, H., Talbot, R., and Sive, B. C. (2009). Are biogenic emissions a significant source of summertime atmospheric toluene in the rural Northeastern United States?, Atmos. Chem. Phys., 9, 81-92, doi: 10.5194/acp-9-81-2009
  21. White, M. L., Russo, R. S., Zhou, Y., Mao, H., Varner, R. K., Ambrose, J., Veres, P., Wingenter, O. W., Haase, K., Stutz, J., Talbot, R., and Sive, B. C. (2008). Volatile organic compounds in northern New England marine and continental environments during the ICARTT 2004 campaign, J. Geophys. Res., 113, D08S90, doi: 10.1029/2007jd009161. 
  22. Zhou, Y., Mao, H., Russo, R. S., Blake, D. R., Wingenter, O. W., Haase, K. B., Ambrose, J., Varner, R. K., Talbot, R., and Sive, B. C. (2008). Bromoform and dibromomethane measurements in the seacoast region of New Hampshire, 2002-2004, J. Geophys. Res., 113(D8), D08305. 
  23. Wingenter, O. W., Haase, K. B., Zeigler, M., Blake, D. R., Rowland, F. S., Sive, B. C., Paulino, A., Thyrhaug, R., Larsen, A., Schulz, K., Meyerhöfer, M., and Riebesell, U. (2007). Unexpected consequences of increasing CO2 and ocean acidity on marine production of DMS and CH2ClI: Potential climate impacts, Geophys. Res. Lett., 34(5), L05710.
  24. Zhou, Y., Varner, R. K., Russo, R. S., Wingenter, O. W., Haase, K. B., Talbot, R., and Sive, B. (2005). Coastal water source of short-lived halocarbons in New England, J. Geophys. Res., 110(D21), D21302.
  25. Wingenter, O. W., Haase, K. B., Strutton, P., Friederich, G., Meinardi, S., Blake, D. R., and Rowland, F. S. (2004). Changing concentrations of CO, CH4, C5H8, CH3Br, CH3I, and dimethyl sulfide during the Southern Ocean Iron Enrichment Experiments, Proceedings of the National Academy of Sciences of the United States of America, 101(23), 8537-8541.