Larry Mastin



9/84-7/88     Geomechanics Program, Stanford University, Ph.D. July 1988

9/81-6/84     Engineering Geology Program, Stanford University, M.S., June 1984

4/78-6/80     Geology Department, University of California, Davis, B.S. (cum Laude), June 1980



10/90-         Research Hydrologist, U.S. Geological Survey, Volcano Hazards Program, Cascades Volcano Observatory, Vancouver, Washington.  I am interested in the dynamics of explosive volcanic eruptions, and in the physical processes that govern them.  In recent years I have specialized in modeling and forecasting the atmospheric movement of volcanic ash during eruptions. 

8/88-6/90     Post-doctoral Researcher, Department of Geophysics, University of Karlsruhe, Germany.  Assembled data on tectonic stress in Europe as part of the World Stress Map Project; and evaluated data from the German KTB pilot hole to constrain the state of tectonic stress in northern Bavaria.

7/82-6/84     Physical Science Technician, Hydraulic Fracturing Project, Department of Earthquakes, Volcanoes, and Engineering, USGS, Menlo Park, CA.

11/80-9/81     Wellsite geologist (Mud logger), Exploration Logging, Inc.  Worked on oil and gas wells in the Brooks Range, North Slope, Sacramento Valley and Santa Barbara Channel.








Mastin, L.G., Van Eaton, A.R., and A.J. Durant (2016), Adjusting particle-size distributions to account for aggregation in tephra-deposit model forecasts: Atmos. Chem. Phys., v. 16, no. 14, p. 9399-9420.

Mastin, L. G., A. R. Van Eaton, and J. B. Lowenstern (2014), Modeling ash fall distribution from a Yellowstone supereruption, Geochemistry, Geophysics, Geosystems, n/a-n/a, doi:10.1002/2014GC005469.[Link]

Mastin, L. G. (2014), Testing the accuracy of a 1-D volcanic plume model in estimating mass eruption rate, Journal of Geophysical Research: Atmospheres, 119(5), 2013JD020604, doi:10.1002/2013JD020604. [Link]

Mastin, L. G., H. Schwaiger, D. J. Schneider, K. L. Wallace, J. Schaefer, and R. P. Denlinger (2013). Injection, transport, and deposition of tephra during event 5 at Redoubt Volcano, 23 March, 2009, J. Volcanol. Geotherm. Res. 259(1), pp. 201-213. [Link]

Schwaiger, H. F., R. P. Denlinger, and L. G. Mastin (2012), Ash3d: A finite-volume, conservative numerical model for ash transport and tephra deposition, J. Geophys. Res., 117(B4), B04204. [Link]

Mastin, L. G., M. Lisowski, E. Roeloffs, and N. M. Beeler (2009), Improved constraints on the estimated size and volatile content of the Mount St. Helens magma system from the 2004-2008 history of dome growth and deformation, Geophys. Res. Lett., 36(L20304), doi:10.1029/2009GL039863. [Link]

Mastin, L. G., et al. (2009), A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions, J. Volcanol. Geotherm. Res., 186(1–2), 10-21. [Link]

Mastin LG (2007) A user-friendly one-dimensional model for wet volcanic plumes. Geochemistry, Geophysics, Geosystems 8(Q03014):doi:10.1029/2006GC001455 [Link]

Mastin, L. G., O. Spieler, and W. S. Downey (2009), An experimental study of hydromagmatic fragmentation through energetic, non-explosive magma-water mixing, Journal of Volcanology and Geothermal Research180, 161-170.

Mastin, L. G. (2007), The generation of fine hydromagmatic ash by growth and disintegration of glassy rinds, Journal of Geophysical Research112, doi:10.1029/2005JB003883.

Mastin, L. G. (2005), The controlling effect of viscous dissipation on magma flow in silicic conduits,Journal of Volcanology and Geothermal Research143, 17-28.

Mastin, L. G. (2002), Insights into volcanic conduit flow from an open-source numerical model,Geochemistry, Geophysics, Geosystems3, 10.1029.

Mastin, L. G. (1997), Evidence for water influx from a caldera lake during the explosive hydromagmatic eruption of 1790, Kilauea Volcano, Hawaii, Journal of Geophysical Research102, 20093-20109.