Research Oceanographer at the USGS Pacific Coastal and Marine Science Center
Science and Products
CoSMoS 2.0: North-central California (outer coast)
Climate impacts to Arctic coasts, recent activities
San Francisco Bay Basic Tide Model
Using Video Imagery to Study Coastal Change: Barter Island, Alaska
Operational CoSMoS model: San Francisco Bay
PS-CoSMoS FAQs
Puget Sound - Coastal Storm Modeling System (PS-CoSMoS) frequently asked questions
CoSMoS 1.0: Southern California
Coastal Storm Modeling System (CoSMoS) for Southern California, v3.0, Phase 2
Near-surface wind fields for San Francisco Bay--historical and 21st-century projected time series
Nearshore waves in southern California: hindcast, and modeled historical and 21st-century projected time series
Wave projections for United States mainland coasts
Wave and Orbital Velocity Model Data for the California Continental Shelf
Drivers of extreme water levels in a large, urban, high-energy coastal estuary – A case study of the San Francisco Bay
Multiple climate change-driven tipping points for coastal systems
Global-scale changes to extreme ocean wave events due to anthropogenic warming
Assessment of flood forecast products for a coupled tributary-Coastal model
USGS permafrost research determines the risks of permafrost thaw to biologic and hydrologic resources
Changing storm conditions in response to projected 21st century climate change and the potential impact on an arctic barrier island–lagoon system—A pilot study for Arey Island and Lagoon, eastern Arctic Alaska
Impacts of sea-level rise on the tidal reach of California coastal rivers using the Coastal Storm Modeling System (CoSMoS)
Modeling sediment bypassing around idealized rocky headlands
Toward a national coastal hazard forecast of total water levels
Assessing patterns of annual change to permafrost bluffs along the North Slope coast of Alaska using high-resolution imagery and elevation models
Coastal permafrost bluffs at Barter Island, on the North Slope, Beaufort Sea Coast of Alaska are among the most rapidly eroding along Alaska’s coast, having retreated up to 132 m between 1955 and 2015. Here we quantify rates and patterns of change over a single year using very-high resolution orthophotomosaics and co-registered surface elevation models derived from a survey-grade form of structure
Dynamic flood modeling essential to assess the coastal impacts of climate change
Towards determining spatial methane distribution on Arctic permafrost bluffs with an unmanned aerial system
Science and Products
- Science
Filter Total Items: 19
CoSMoS 2.0: North-central California (outer coast)
Our Coast Our Future (OCOF) is a collaborative, user-driven project providing science-based decision-support tools to help coastal planners and emergency responders understand, visualize, and anticipate local impacts from sea-level rise (SLR) and storms in the San Francisco Bay region.Climate impacts to Arctic coasts, recent activities
USGS activities related to the project, "Climate Impacts to Arctic Coasts."San Francisco Bay Basic Tide Model
This web page provides files that may be used to run a basic depth-averaged (2DH) Deltares Delft3D version 4.00.01 astronomic tide model for San Francisco Bay. It was developed with the primary aim of assessing water level fluctuations and flow conditions in the vicinity of the Golden Gate (Elias and Hansen 2013).Using Video Imagery to Study Coastal Change: Barter Island, Alaska
For a short study period, two video cameras overlooked the coast from atop the coastal bluff of Barter Island in northern Alaska. The purpose was to observe and quantify coastal processes such as wave run-up, development of rip channels, bluff erosion, and movement of sandbars and ice floes.Operational CoSMoS model: San Francisco Bay
The San Francisco Bay Coastal Flood Forecast pilot project is an operational CoSMoS model, part of a project funded by the California Department of Water Resources (CA-DWR) and NOAA’s Earth System Research Laboratory (ESRL).PS-CoSMoS FAQs
Puget Sound - Coastal Storm Modeling System (PS-CoSMoS) frequently asked questions
CoSMoS 1.0: Southern California
CoSMoS was initially developed and tested for the Southern California coast in collaboration with Deltares. CoSMoS has been used to assess coastal vulnerability within Southern California for the ARkStorm scenario, the January 2010 El Niño and Sea-Level Rise scenarios, and the January 2005 Newport Harbor Flood scenario. - Data
Filter Total Items: 17
Coastal Storm Modeling System (CoSMoS) for Southern California, v3.0, Phase 2
The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level-rise scenarios, as well as long-term shoreline change and cliff retreat. Resulting projections for future climate scenarios (sea-level rise and storms) provide emergency responders aNear-surface wind fields for San Francisco Bay--historical and 21st-century projected time series
To support Coastal Storm Modeling System (CoSMoS) in the San Francisco Bay (v2.1), time series of historical and 21st-century near-surface wind fields (eastward and northward wind arrays) were simulated throughout the Bay. While global climate models (GCMs) provide useful projections of near-surface wind vectors into the 21st century, resolution is not sufficient enough for use in regional wave mNearshore waves in southern California: hindcast, and modeled historical and 21st-century projected time series
As part of the Coastal Storm Modeling System (CoSMoS), time series of hindcast, historical, and 21st-century nearshore wave parameters (wave height, period, and direction) were simulated for the southern California coast from Point Conception to the Mexican border. The hindcast (1980-2010) time series represents reanalysis-forced offshore waves propagated to the nearshore, whereas the historical (Wave projections for United States mainland coasts
Coastal managers and ocean engineers rely heavily on projected average and extreme wave conditions for planning and design purposes, but when working on a local or regional scale, are faced with much uncertainty as changes in the global climate impart spatially-varying trends. Future storm conditions are likely to evolve in a fashion that is unlike past conditions and is ultimately dependent on thWave and Orbital Velocity Model Data for the California Continental Shelf
The oceanographic processes that disturb the continental shelf include the actions of surface waves, internal waves, and currents (tidal, density, wave-driven, wind-driven, and geostrophic). Because the North Pacific Ocean can generate extremely large surface waves that yield relatively high near-bed wave orbital velocities, wave-generated near-bed currents are often considered to be the dominant - Multimedia
- Publications
Filter Total Items: 66
Drivers of extreme water levels in a large, urban, high-energy coastal estuary – A case study of the San Francisco Bay
Reliable and long-term hindcast data of water levels are essential in quantifying return period and values of extreme water levels. In order to inform design decisions on a local flood control district level, process-based numerical modeling has proven an essential tool to provide the needed temporal and spatial coverage for different extreme value analysis methods. To determine the importance ofMultiple climate change-driven tipping points for coastal systems
As the climate evolves over the next century, the interaction of accelerating sea level rise (SLR) and storms, combined with confining development and infrastructure, will place greater stresses on physical, ecological, and human systems along the ocean-land margin. Many of these valued coastal systems could reach “tipping points,” at which hazard exposure substantially increases and threatens theGlobal-scale changes to extreme ocean wave events due to anthropogenic warming
Extreme surface ocean waves are often primary drivers of coastal flooding and erosion over various time scales. Hence, understanding future changes in extreme wave events owing to global warming is of socio-economic and environmental significance. However, our current knowledge of potential changes in high-frequency (defined here as having return periods of less than 1 year) extreme wave events arAssessment of flood forecast products for a coupled tributary-Coastal model
Compound flooding, resulting from a combination of riverine and coastal processes, is a complex but important hazard to resolve along urbanized shorelines in the vicinity of river mouths. However, inland flooding models rarely consider oceanographic conditions, and vice versa for coastal flood models. Here, we describe the development of an operational, integrated coastal-watershed flooding modelUSGS permafrost research determines the risks of permafrost thaw to biologic and hydrologic resources
The U.S. Geological Survey (USGS), in collaboration with university, Federal, Tribal, and independent partners, conducts fundamental research on the distribution, vulnerability, and importance of permafrost in arctic and boreal ecosystems. Scientists, land managers, and policy makers use USGS data to help make decisions for development, wildlife habitat, and other needs. Native villages and citiesByNatural Hazards, Water Resources, Earth Resources Observation and Science Center, Climate Research and Development Program, Coastal and Marine Hazards and Resources Program, Land Change Science Program, Volcano Hazards, Earth Resources Observation and Science (EROS) Center , Geology, Geophysics, and Geochemistry Science Center, Geology, Minerals, Energy, and Geophysics Science Center, Geosciences and Environmental Change Science Center, Pacific Coastal and Marine Science Center, Volcano Science CenterChanging storm conditions in response to projected 21st century climate change and the potential impact on an arctic barrier island–lagoon system—A pilot study for Arey Island and Lagoon, eastern Arctic Alaska
Executive SummaryArey Lagoon, located in eastern Arctic Alaska, supports a highly productive ecosystem, where soft substrate and coastal wet sedge fringing the shores are feeding grounds and nurseries for a variety of marine fish and waterfowl. The lagoon is partially protected from the direct onslaught of Arctic Ocean waves by a barrier island chain (Arey Island) which in itself provides importanImpacts of sea-level rise on the tidal reach of California coastal rivers using the Coastal Storm Modeling System (CoSMoS)
In coastal rivers, the interactions between tides and fluvial discharge affect local ecology, sedimentation, river dynamics, river mouth configuration, and the flooding potential in adjacent wetlands and low-lying areas. With sea-level rise, the tidal reach within coastal rivers can expand upstream, impacting river dynamics and increasing flood risk across a much greater area. Rivers along the PacModeling sediment bypassing around idealized rocky headlands
Alongshore sediment bypassing rocky headlands remains understudied despite the importance of characterizing littoral processes for erosion abatement, beach management, and climate change adaptation. To address this gap, a numerical model sediment transport study was developed to identify controlling factors and mechanisms for sediment headland bypassing potential. Four idealized headlands were desToward a national coastal hazard forecast of total water levels
Storm surge and large waves combine to erode beaches, cause marsh and coral decay, and inundate low-elevation areas, resulting in hazards to coastal communities and loss of natural resources. The USGS, in collaboration with NOAA, is developing a real-time system to provide ∼ 6-day forecasts of total water levels (TWLs) combining tides, storm surge, and wave runup. TWL is compared with dune elevatiAssessing patterns of annual change to permafrost bluffs along the North Slope coast of Alaska using high-resolution imagery and elevation models
Coastal permafrost bluffs at Barter Island, on the North Slope, Beaufort Sea Coast of Alaska are among the most rapidly eroding along Alaska’s coast, having retreated up to 132 m between 1955 and 2015. Here we quantify rates and patterns of change over a single year using very-high resolution orthophotomosaics and co-registered surface elevation models derived from a survey-grade form of structure
Dynamic flood modeling essential to assess the coastal impacts of climate change
Coastal inundation due to sea level rise (SLR) is projected to displace hundreds of millions of people worldwide over the next century, creating significant economic, humanitarian, and national-security challenges. However, the majority of previous efforts to characterize potential coastal impacts of climate change have focused primarily on long-term SLR with a static tide level, and have not compTowards determining spatial methane distribution on Arctic permafrost bluffs with an unmanned aerial system
Arctic permafrost stores vast amounts of methane (CH4) in subsurface reservoirs. Thawing permafrost creates areas for this potent greenhouse gas to be released to the atmosphere. Identifying ‘hot spots’ of methane flux on a local scale has been limited by the spatial scales of traditional ground-based or satellite-based methane-sampling methods. Here we present a reliable and an easily replicable - Web Tools
- News