Skip to main content
U.S. flag

An official website of the United States government

Dissolved organic carbon export and internal cycling in small, headwater lakes

October 27, 2010

Carbon (C) cycling in freshwater lakes is intense but poorly integrated into our current understanding of overall C transport from the land to the oceans. We quantified dissolved organic carbon export (DOCX) and compared it with modeled gross DOC mineralization (DOCR) to determine whether hydrologic or within-lake processes dominated DOC cycling in a small headwaters watershed in Minnesota, USA. We also used DOC optical properties to gather information about DOC sources. We then compared our results to a data set of approximately 1500 lakes in the Eastern USA (Eastern Lake Survey, ELS, data set) to place our results in context of lakes more broadly. In the open-basin lakes in our watershed (n = 5), DOCX ranged from 60 to 183 g C m−2 lake area yr−1, whereas DOCR ranged from 15 to 21 g C m−2 lake area yr−1, emphasizing that lateral DOC fluxes dominated. DOCX calculated in our study watershed clustered near the 75th percentile of open-basin lakes in the ELS data set, suggesting that these results were not unusual. In contrast, DOCX in closed-basin lakes (n = 2) was approximately 5 g C m−2 lake area yr−1, whereas DOCR was 37 to 42 g C m−2 lake area yr−1, suggesting that internal C cycling dominated. In the ELS data set, median DOCX was 32 and 12 g C m−2 yr−1 in open-basin and closed-basin lakes, respectively. Although not as high as what was observed in our study watershed, DOCX is an important component of lake C flux more generally, particularly in open-basin lakes.

Publication Year 2010
Title Dissolved organic carbon export and internal cycling in small, headwater lakes
DOI 10.1029/2010GB003815
Authors Edward G. Stets, Robert G. Striegl, George R. Aiken
Publication Type Article
Publication Subtype Journal Article
Series Title Global Biogeochemical Cycles
Index ID 70171519
Record Source USGS Publications Warehouse
USGS Organization Toxic Substances Hydrology Program; National Research Program - Central Branch