Discharge and dissolved-solids characteristics of Blacks Fork above Smiths Fork, Wyoming, April 2018 through September 2019
The Colorado River Basin Salinity Control Forum was formed in 1973 to coordinate salinity control efforts among the States in the Colorado River Basin, including Wyoming. The Colorado River Salinity Control Act of 1974 (Public Law 93–320) authorized “the construction, operation, and maintenance of certain works in the Colorado River Basin to control the salinity of water delivered to users in the United States and Mexico.” Water-quality standards for salinity in the lower Colorado River Basin were adopted in 1975. To help meet these standards, the Bureau of Reclamation, Natural Resource Conservation Service, and States within the Colorado River Basin have implemented salinity control projects that focus on reducing salt loading associated with irrigated agriculture by improving water delivery systems and water management practices. The term salinity is synonymous with dissolved solids in this report.
The Bureau of Reclamation, in conjunction with the Colorado River Basin Salinity Control Forum, was interested in determining the contribution of dissolved solids from Blacks Fork above Smiths Fork to the Colorado River and initiated a study of Blacks Fork above Smiths Fork in 2018. In early 2018, the U.S. Geological Survey installed a streamgage at the most downstream location on the Blacks Fork, upstream from the convergence with Smiths Fork, to characterize the stream. The Blacks Fork above Smiths Fork, near Lyman, Wyoming, streamgage (U.S. Geological Survey identifier 09219200) was operated from April 4, 2018, through September 30, 2019, collecting continuous stream stage and specific-conductance data, from which continuous discharge, dissolved-solids concentrations, and dissolved-solids loads were calculated. Seven sites were selected on Blacks Fork and a tributary to describe a snapshot of the discharge and dissolved-solids characteristics. These sites were sampled during July, August, and September 2018 and June, July, August, and September 2019 report.
Discharge at the Blacks Fork above Smiths Fork, near Lyman, Wyo., streamgage (09219200) from April through September in 2018 was lower and less variable than during the same period in 2019. The mean daily (mean of the daily means) discharge during those 6 months in 2018 (15.1 cubic feet per second [ft3/s]) was about one-tenth of the discharge during the same period in 2019 (152 ft3/s). The cumulative monthly discharge during April through September in 2018 was 5,360 acre-feet, about one-tenth of the discharge during the same period in 2019 which was 54,700 acre-feet. Similar differences in discharge between the 2018 and 2019 periods also are noted at other Blacks Fork streamgages in the area.
Continuous specific conductance data and the statistical relation between specific conductance and dissolved-solids concentrations were used to calculate the daily mean dissolved-solids concentrations. Dissolved solids often have an inverse relation with discharge because higher discharges typically have a diluting effect that lowers the dissolved-solids concentrations. In general, when discharges at the Blacks Fork above Smiths Fork streamgage (09219200) are higher, dissolved-solids concentrations are generally lower. However, the high dissolved-solids concentrations that are measured during high discharges indicate that the system has natural variability and the dissolved-solids concentrations are determined by more factors than just discharge. The mean daily dissolved-solids concentration during April through September 2018 was 1,630 milligrams per liter and during the same period in 2019 was 1,100 milligrams per liter.
Dissolved-solids loads were calculated as the product of the discharge and dissolved-solids concentration. The daily mean dissolved-solids loads during 2018 were typically lower than during 2019. This result is primarily because the discharge was much lower in 2018 than in 2019. Therefore, although the daily mean dissolved-solids concentrations tended to be higher in 2018, the substantially higher discharges in 2019 had more of an effect on the dissolved-solids loads than the dissolved-solids concentrations.
The cumulative dissolved-solids load at the Blacks Fork above Smiths Fork, near Lyman, Wyo., streamgage (09219200) during the 18-month study was 81,200 tons, with a mean daily load of 149 tons per day. During the 6-month period from April through September 2018, the cumulative dissolved-solids load at the streamgage was estimated to be 8,740 tons and, during the same 6 months in 2019, the cumulative dissolved-solids load was estimated to be 60,900 tons. During the fall and winter between the two periods, the cumulative dissolved-solids load was 11,600 tons.
Discharge and dissolved-solids concentrations from samples collected during the synoptic sampling events were highly variable among most sites during most synoptic sampling events and also highly variable at most sites among different sampling events. The two sites upstream from the tributary input from Threemile Creek had lower dissolved-solids concentrations than sites including and downstream from the tributary. Sites including and downstream from the tributary had similar values and variability of dissolved-solids loads, with the exception of the farthest downstream site at the Blacks Fork above Smiths Fork, near Lyman, Wyo., streamgage (09219200) that tended to have larger dissolved-solids loads and higher variability among synoptic sampling events.
Citation Information
Publication Year | 2021 |
---|---|
Title | Discharge and dissolved-solids characteristics of Blacks Fork above Smiths Fork, Wyoming, April 2018 through September 2019 |
DOI | 10.3133/sir20215095 |
Authors | Cheryl A. Eddy-Miller, Jerrod D. Wheeler, Ruth M. Law, Shaun W. Moran |
Publication Type | Report |
Publication Subtype | USGS Numbered Series |
Series Title | Scientific Investigations Report |
Series Number | 2021-5095 |
Index ID | sir20215095 |
Record Source | USGS Publications Warehouse |
USGS Organization | Wyoming-Montana Water Science Center |