Skip to main content
U.S. flag

An official website of the United States government

Occurrence of fecal-indicator bacteria and protocols for identification of fecal-contamination sources in selected reaches of the West Branch Brandywine Creek, Chester County, Pennsylvania

June 22, 2005

The presence of fecal-indicator bacteria indicates the potential presence of pathogens originating from the fecal matter of warm-blooded animals. These pathogens are responsible for numerous human diseases ranging from common diarrhea to meningitis and polio. The detection of fecal-indicator bacteria and interpretation of the resultant data are, therefore, of great importance to water-resource managers. Current (2005) techniques used to assess fecal contamination within the fluvial environment primarily assess samples collected from the water column, either as grab samples or as depth- and (or) width-integrated samples. However, current research indicates approximately 99 percent of all bacteria within nature exist as attached, or sessile, bacteria. Because of this condition, most current techniques for the detection of fecal contamination, which utilize bacteria, assess only about 1 percent of the total bacteria within the fluvial system and are, therefore, problematic. Evaluation of the environmental factors affecting the occurrence and distribution of bacteria within the fluvial system, as well as the evaluation and modification of alternative approaches that effectively quantify the larger population of sessile bacteria within fluvial sediments, will present water-resource managers with more effective tools to assess, prevent, and (or) eliminate sources of fecal contamination within pristine and impaired watersheds.

Two stream reaches on the West Branch Brandywine Creek in the Coatesville, Pa., region were studied between September 2002 and August 2003. The effects of sediment particle size, climatic conditions, aquatic growth, environmental chemistry, impervious surfaces, sediment and soil filtration, and dams on observed bacteria concentrations were evaluated. Alternative approaches were assessed to better detect geographic sources of fecal contamination including the use of turbidity as a surrogate for bacteria, the modification and implementation of sandbag bacteria samplers, and the use of optical brighteners. For the purposes of this report, sources of bacteria were defined as geographic locations where elevated concentrations of bacteria are observed within, or expected to enter, the main branch of the West Branch Brandywine Creek. Biologic sources (for example, waterfowl) were noted where applicable; however, no specific study of biologic sources (such as bacterial source tracking) was conducted.

Data indicated that specific bacterial populations within fluvial sediments could be related to specific particle-size ranges. This relation is likely the result of the reduced porosity and permeability associated with finer sediments and the ability of specific bacteria to tolerate particular environments. Escherichia coli (E. coli) showed a higher median concentration (2,160 colonies per gram of saturated sediment) in the 0.125 to 0.5-millimeter size range of natural sediments than in other ranges, and enterococcus bacteria showed a higher median concentration (61,830 colonies per gram of saturated sediment) in the 0.062 to 0.25-millimeter size range of natural sediments than in other ranges. There were insufficient data to assess the particle-size relation to fecal coliform bacteria and (or) fecal streptococcus bacteria.

Climatic conditions were shown to affect bacteria concentrations in both the water column and fluvial sediments. Drought conditions in 2002 resulted in lower overall bacteria concentrations than the more typically wet year of 2003. E. coli concentrations in fluvial sediment along the Coatesville study reach in 2002 had a median concentration of 92 colonies per gram of saturated sediment; in 2003, the median concentration had risen to 4,752 colonies per gram of saturated sediment.

Symbiotic relations between bacteria and aquatic growth were likely responsible for increased bacteria concentrations observed within an impoundment area on the Coatesville study reach. This reach showed evidence of elevated aquatic growth and sharp increases in E. coli concentrations from upstream to downstream through the impoundment area in both 2002 and 2003. In 2003, E. coli concentrations within the waters column increased from 940 colonies per 100 milliliters upstream to 6,000 colonies per 100 milliliters at the dam crest. Given that these bacteria likely resulted from natural bacterial regrowth, the use of E. coli as an indicator of fecal contamination was severely impaired.

Variable environmental conditions along the West Branch Brandywine Creek made the common field-chemical parameters of specific conductance, temperature, pH, and dissolved oxygen ineffective and (or) impossible to use for the determination of inputs of fecal contamination. Extreme variations in chemical gradients commonly were related to the urban/industrial signature of the watershed. For example, during base-flow sampling in 2002, specific-conductance values exceeding 1,000 microsiemens per centimeter observed in effluent from a local steel mill. This effluent raised the specific conductance within the West Branch Brandywine from just above 200 microsiemens per centimeter upstream from the outfall to just below 500 microsiemens per centimeter downstream from the outfall. These chemical gradients also, likely, had an effect on the initial colonization of bacteria, the formation of biofilms, and the persistence of certain types of bacteria along the study reach.

Data collected in 2003 indicated that nutrients increased during both base-flow and stormflow conditions along the Coatesville study reach. For example, during base-flow sampling in 2003, 20 pounds of phosphorus was shown to enter the West Branch Brandywine Creek along the Coatesville study reach. The largest contributors to this base-flow nutrient load were likely two wastewater-treatment facilities adjacent to the study reach. During stormflow sampling in 2003, 480 pounds of phosphorus was shown to enter the West Branch Brandywine Creek along the Coatesville study reach. Data, along with other research, indicated the largest contributor to this stormflow nutrient load was likely remobilized sediment originating from a large dam impoundment. These elevated nutrient concentrations were considered sufficient to promote accelerated aquatic growth along the reach.

Data collected in 2003 showed that wastewater constituents entered the West Branch Brandywine Creek largely from urban storm-sewer systems. Samples from the primary storm sewer for the city of Coatesville had detections for 20 of 69 wastewater constituents. These constituents included both strong and weak indicators of fecal contamination and generally indicated the storm-sewer system along the Coatesville study reach was a likely source of fecal-indicator bacteria and fecal contamination under base-flow conditions. By comparison, 5 constituents were detected in samples from the upstream end of the reach, and 10 constituents were detected in samples from the downstream end of the reach. During stormflow, numbers of detections were similar along the entire length of the study reach-five in samples from the upstream end, eight in samples from the center of the reach, and seven in samples from the downstream end of the reach. These data indicate that point sources (such as culverts and pipes, septic systems, and wastewater-treatment facilities) are not likely the origin of bacteria contamination during stormflow. The bacteria concentrations observed during stormflow events probably result from remobilized sessile bacteria stored within fluvial sediments. In this case, these bacteria should not be considered indicators of current fecal contamination.

Impervious surfaces were found to increase bacteria concentrations along the West Branch Brandywine Creek because contaminated runoff from impervious areas generally flows into, and is concentrated within, the confines of the local storm-sewer system. During 2002, storm-sewer outfalls draining impervious areas were associated with all major locations of elevated bacterial concentrations (greater than 1,200 colonies per gram of saturated sediment) in fluvial sediments. During 2003, wetter conditions and overall bacteria concentrations higher than in 2002 resulted in point sources of bacterial contamination becoming less pronounced; however, the storm-sewer system, draining adjacent impervious areas, was still observed to be the primary source of bacteria along the reach. Where stormwater and (or) other runoff from these areas was allowed to infiltrate and (or) flow through wetland and riparian buffers, bacteria concentrations were not observed to be elevated above background levels commonly observed throughout similar areas of the same reach.

Two run-of-the-river dams along the Coatesville study reach were evaluated for their effects on observed bacterial concentrations. These dams were shown to have greater or lesser effects on bacterial concentrations depending on the size of the structure and the capacity of the structure to impede flows. The smaller upstream dam had an approximate height of 3 feet and showed little observed effect on measured turbidity values; these data indicated that the dam did not effectively impede the flow of water or sediment within the West Branch Brandywine Creek. Consequently, this small dam did not show any observed effect on bacterial concentrations either upstream or downstream of the structure. The larger dam, near the middle of the reach, had an approximate height of 20 feet and showed greater effects on both turbidity and bacteria concentrations. The capacity of the larger dam to impede flows, combined with nutrients entering the reach, resulted in increased biologic activity throughout the impoundment area. Within this larger impoundment, enterococcus bacteria populations were observed to decrease sharply and E. coli bacteria populations were observed to increase sharply as flow approached the dam crest. All bacteria levels were then observed to drop to background levels, in both the water column and fluvial sediment, immediately downstream from the dam crest. Additional study is required to determine the cause for this rapid die off.

Turbidity was assessed as a potential surrogate for E. coli bacteria. Regression analysis indicated higher turbidity levels usually can indicate higher concentrations of bacteria (R2 = 0.67), but the relation was too sporadic on the West Branch Brandywine Creek to use turbidity as a surrogate for estimated bacteria concentrations. Evaluation of data from individual base-flow and stormflow events resulted in variable and generally poor statistical relations between E. coli bacteria and turbidity (R2 values ranged from 0.02 to 0.94).

Sandbag samplers were used in 2003 to determine their suitability for the assessment of fecal contamination. Sandbag samplers rely on the ability of bacteria to attach to surfaces and use the larger sessile bacteria populations instead of the more commonly used planktonic bacteria populations. E. coli bacteria concentrations observed in the sandbag samplers, after 1 week in place, were similar to those found within natural sediments collected concurrently. Enterococcus bacteria concentrations within the same sandbag samplers were not similar, and were generally lower, than those observed within the natural sediments. This discrepancy was likely because sand within the samplers was sieved to a size that was likely too coarse for enterococcus bacteria to persist.

Optical-brightener samplers were installed along with each sandbag sampler. Optical brighteners are additives used in common household detergents; therefore, detection of optical brighteners, along with elevated fecal-indicator bacteria concentrations, strongly indicates a link to humans. Positive results for optical brighteners were detected only at the outfalls of two sewage-treatment facilities; because of treatment of the effluent from these facilities, these samples did not have elevated bacteria concentrations. The lack of additional positive results was largely because this method is not sensitive to low concentrations of optical brighteners.

Publication Year 2005
Title Occurrence of fecal-indicator bacteria and protocols for identification of fecal-contamination sources in selected reaches of the West Branch Brandywine Creek, Chester County, Pennsylvania
DOI 10.3133/sir20055039
Authors Peter J. Cinotto
Publication Type Report
Publication Subtype USGS Numbered Series
Series Title Scientific Investigations Report
Series Number 2005-5039
Index ID sir20055039
Record Source USGS Publications Warehouse
USGS Organization Pennsylvania Water Science Center
Was this page helpful?