Ground-based time-domain electromagnetic data and resistivity models for the Mississippi Alluvial Plain Project
July 1, 2019
The Mississippi Alluvial Plain (MAP) Project contains several geologic units which act as important aquifers. We collected several sets of time-domain electromagnetic (TEM) data consisting of two higher-density surveys and six regional-scale transects. The higher density surveys were collected to compare and contrast to other geophysical data not included in this data release, such as airborne electromagnetic, magnetic resonance sounding, and towed time-domain electromagnetic surveys . The transects, which were collected over the span of three years, cross the MAP study area from east-to-west, with about 100 km line spacing, and cover an area of nearly 100,000 square-kilometer. Each transect spans a distance of 100-200 km, with 10-20 TEM soundings that capture the major geologic units. TEM is capable of measuring the electrical resistivity structure of the subsurface and distinguishing between geologic units that possess different electrical properties. These TEM data are being used to refine the 3D Mississippi Embayment Aquifer System Regional Groundwater Availability Study (https://www2.usgs.gov/water/lowermississippigulf/lmgweb/meras/index.html).
Citation Information
Publication Year | 2019 |
---|---|
Title | Ground-based time-domain electromagnetic data and resistivity models for the Mississippi Alluvial Plain Project |
DOI | 10.5066/P965NBFT |
Authors | Burke J Minsley, Michael D.M. Pace, Benjamin Bloss |
Product Type | Data Release |
Record Source | USGS Asset Identifier Service (AIS) |
USGS Organization | Geology, Geophysics, and Geochemistry Science Center |
Rights | This work is marked with CC0 1.0 Universal |
Related
Airborne electromagnetic, magnetic, and radiometric survey of the Mississippi Alluvial Plain, November 2019 - March 2020
Airborne electromagnetic (AEM), magnetic, and radiometric data were acquired November 2019 to March 2020 along 24,030 line-kilometers (line-km) over the Mississippi Alluvial Plain (MAP). Data were acquired by CGG Canada Services, Ltd. with three different airborne sensors: the CGG Canada Services, Ltd. TEMPEST time-domain AEM instrument that is used to map subsurface geologic structure...
Airborne geophysical surveys of the lower Mississippi Valley demonstrate system-scale mapping of subsurface architecture
The Mississippi Alluvial Plain hosts one of the most prolific shallow aquifer systems in the United States but is experiencing chronic groundwater decline. The Reelfoot rift and New Madrid seismic zone underlie the region and represent an important and poorly understood seismic hazard. Despite its societal and economic importance, the shallow subsurface architecture has not been mapped...
Authors
Burke J. Minsley, James R. Rigby, Stephanie R. James, Bethany L. Burton, Katherine J. Knierim, Michael Pace, Paul A. Bedrosian, Wade Kress
Related
Airborne electromagnetic, magnetic, and radiometric survey of the Mississippi Alluvial Plain, November 2019 - March 2020
Airborne electromagnetic (AEM), magnetic, and radiometric data were acquired November 2019 to March 2020 along 24,030 line-kilometers (line-km) over the Mississippi Alluvial Plain (MAP). Data were acquired by CGG Canada Services, Ltd. with three different airborne sensors: the CGG Canada Services, Ltd. TEMPEST time-domain AEM instrument that is used to map subsurface geologic structure...
Airborne geophysical surveys of the lower Mississippi Valley demonstrate system-scale mapping of subsurface architecture
The Mississippi Alluvial Plain hosts one of the most prolific shallow aquifer systems in the United States but is experiencing chronic groundwater decline. The Reelfoot rift and New Madrid seismic zone underlie the region and represent an important and poorly understood seismic hazard. Despite its societal and economic importance, the shallow subsurface architecture has not been mapped...
Authors
Burke J. Minsley, James R. Rigby, Stephanie R. James, Bethany L. Burton, Katherine J. Knierim, Michael Pace, Paul A. Bedrosian, Wade Kress