Sea-Level Rise
Sea-Level Rise
Filter Total Items: 16
Coastal Resource Evaluation for Management Application (CREMA)
Coastal environments are dynamic systems that provide high ecological, economical, recreational, and cultural value. Managing coastal systems requires a comprehensive understanding of the complex interactions between geological and ecological processes, as well as the ability to predict both the near-term and long-term impacts of storms and sea-level rise. The Coastal Resource Evaluation for...
Natural Subsidence and Sea-Level Rise - Subsidence and Wetland Loss Related to Fluid Energy Production, Gulf Coast Basin
Geologic proxies may shed light on long-term environmental trends and stability of the Louisiana coastal marsh. The combined processes of accretion, sea-level rise and subsidence influence wetland elevation and determine marsh stability.
Estuarine and MaRsh Geology Research Project
The goal of the Estuarine and MaRsh Geology (EMRG) Research Project is to study how and where short- and long-term marsh and estuarine coastal processes interact, how they influence coastal accretion or erosion, and how they pre-condition a marsh’s resiliency to storms, sea-level change, and human alterations along the northern Gulf of Mexico (Grand Bay and Point aux Chenes, Mississippi and St...
Coastal Sediment Availability and Flux (CSAF)
Sediments are the foundation of coastal systems, including barrier islands. Their behavior is driven by not only sediment availability, but also sediment exchanges between barrier island environments. We collect geophysical, remote sensing, and sediment data to estimate these parameters, which are integrated with models to improve prediction of coastal response to extreme storms and sea-level rise...
Real-Time Storm Response
Coastal change forecasts and pre- and post-storm photos documenting coastal change for landfalling storms. Currently responding to Hurricane Dorian.
Coastal System Change at Fire Island, New York
Fire Island is a 50-km long barrier island along the south shore of Long Island, New York. The island is comprised of seventeen year-round communities; federal, state, and county parks; and supports distinct ecosystems alongside areas of economic and cultural value. In addition to providing resources to its residents, the barrier island also protects the heavily-populated mainland from storm waves...
Sea-level and Storm Impacts on Estuarine Environments and Shorelines (SSIEES)
This project assesses the physical controls of sediment and material exchange between wetlands and estuarine environments along the northern Gulf of Mexico (Grand Bay Alabama/Mississippi and Vermilion Bay, Louisiana) and the Atlantic coast (Chincoteague Bay, Virginia/Maryland).
Sea Level Rise and Climate: Impacts on the Greater Everglades Ecosystem and Restoration
The Greater Everglades Ecosystem covers much of south Florida, and the highest areas are only a few meters above sea level. Predictions of sea level rise and changes in storm intensity for the 21st century are particularly concerning to the urban population of Miami and the east coast, but also represent a challenge to Everglades National Park and Biscayne National Park resource managers. The...
Operational Total Water Level and Coastal Change Forecasts
The viewer shows predictions of the timing and magnitude of water levels at the shoreline and potential impacts to coastal dunes.
Scenario-Based Assessments for Coastal Change Hazard Forecasts
A decade of USGS research on storm-driven coastal change hazards has provided the data and modeling capabilities needed to identify areas of our coastline that are likely to experience extreme and potentially hazardous erosion during an extreme storm.
Storm-Induced Coastal Processes
Process studies examine the physical processes at work prior to, during, and following coastal storm events. Understanding the processes involved in coastal landform evolution will improve the accuracy of the assessments of storm-induced coastal change hazards.
National Assessment of Coastal Change Hazards
Research to identify areas that are most vulnerable to coastal change hazards including beach and dune erosion, long-term shoreline change, and sea-level rise.
By
Natural Hazards Mission Area, Coastal and Marine Hazards and Resources Program, Pacific Coastal and Marine Science Center, St. Petersburg Coastal and Marine Science Center, Woods Hole Coastal and Marine Science Center, Gulf of Mexico, Hurricane Harvey, Hurricane Irma, Hurricane Jose, Hurricane Maria, Hurricane Matthew, Hurricane Sandy