Chapter 14 Rex Chert member of the Permian Phosphoria Formation: Composition, with emphasis on elements of environmental concern
We present bulk chemical and mineralogical compositions, as well as petrographic and outcrop descriptions, of rocks collected from three measured outcrop sections of the Rex Chert Member of the Phosphoria Formation in southeast Idaho. The three measured sections were chosen from 10 outcrops of Rex Chert that were described in the field. The Rex Chert overlies the Meade Peak Phosphatic Shale Member of the Phosphoria Formation, the source of phosphate ore in the region. Rex Chert removed as overburden constitutes part of the material transferred to waste-rock piles during phosphate mining. It is also used to surface roads in the mining district. It has been proposed that the chert be used to cap and isolate waste piles, thereby inhibiting the leaching of potentially toxic elements into the environment. The rock samples studied here are from individual chert beds representative of each stratigraphic section sampled. The Cherty Shale Member of the Phosphoria Formation that overlies the Rex Chert in measured section 1 and the upper Meade Peak and the transition zone to the Rex Chert in section 7 were also described and sampled.
The cherts are predominantly spiculite composed of granular and mosaic quartz, and sponge spicules, with various but minor amounts of other fossils and detrital grains. The Cherty Shale Member and transition rocks between the Meade Peak and Rex Chert are siliceous siltstones and argillaceous cherts with ghosts of sponge spicules and somewhat more detrital grains than the chert. The dominant mineral is quartz. Carbonate beds are rare in each section and are composed predominantly of calcite and dolomite in addition to quartz. Feldspar, mica, clay minerals, calcite, dolomite, and carbonate fluorapatite are minor to trace minerals in the chert.
The concentration of SiO2 in the chert averages 94.6 wt.%. Organic-carbon content is generally very low, but can be as much as 1.8% in Cherty Shale Member samples and as much as 3.3% in samples from the transition between the Meade Peak and Rex Chert. Likewise, phosphate (P2O5) is generally low in the chert, but can be as much as 3.1% in individual chert beds. Selenium concentrations in Rex Chert and Cherty Shale Member samples vary from
Citation Information
| Publication Year | 2004 |
|---|---|
| Title | Chapter 14 Rex Chert member of the Permian Phosphoria Formation: Composition, with emphasis on elements of environmental concern |
| DOI | 10.1016/S1874-2734(04)80016-0 |
| Authors | James Hein, B.R. McIntyre, R.B. Perkins, David Piper, J. Evans |
| Publication Type | Book Chapter |
| Publication Subtype | Book Chapter |
| Series Title | Handbook of Exploration and Environmental Geochemistry |
| Index ID | 70208044 |
| Record Source | USGS Publications Warehouse |
| USGS Organization | Geology, Minerals, Energy, and Geophysics Science Center; Pacific Coastal and Marine Science Center |