Skip to main content
U.S. flag

An official website of the United States government

Pacific Coastal and Marine Science Center

We conduct multidisciplinary scientific research in the coastal and offshore areas of California, Oregon, Washington, Alaska, Hawaii, and other US Pacific Islands; and in other waterways of the United States.

News

link

The Weight of New York City

link

Interagency Partners to Collect Seafloor Data in Southern Alaska

link

A window of opportunity to build coastal resilience: how to optimize coral restoration to reduce impacts of sea-level rise

Publications

Coral restoration for coastal resilience: Integrating ecology, hydrodynamics, and engineering at multiple scales

The loss of functional and accreting coral reefs reduces coastal protection and resilience for tropical coastlines. Coral restoration has potential for recovering healthy reefs that can mitigate risks from coastal hazards and increase sustainability. However, scaling up restoration to the large extent needed for coastal protection requires integrated application of principles from coastal engineer
Authors
T. Shay Viehman, Borja Reguero, Hunter Lenihan, Johanna H. Rosman, Curt Storlazzi, Elizabeth Goergen, Miguel F. Canals Silander, Sarah H. Groves, Daniel Holstein, Andrew Bruckner, Jane Carrick, Brian Haus, Julia Royster, Melissa Duvall, Walter Torres, Jim Hench

Barrier island reconfiguration leads to rapid erosion and relocation of a rural Alaska community

Coastal erosion is one of the foremost hazards that circumpolar communities face. Climate change and warming temperatures are anticipated to accelerate coastal change, increasing risk to coastal communities. Most erosion hazard studies for Alaska communities only consider linear erosion and do not anticipate coastal morphologic changes. This study showcases the possibility and consequence of accel
Authors
Richard M. Buzard, Nicole E.M. Kinsman, Christopher V. Maio, Li H. Erikson, Benjamin M. Jones, Scott K. Anderson, Roberta Glenn, Jacquelyn R. Overbeck

Relative contributions of water-level components to extreme water levels along the US Southeast Atlantic Coast from a regional-scale water-level hindcast

A 38-year hindcast water level product is developed for the U.S. Southeast Atlantic coastline from the entrance of Chesapeake Bay to the southeast tip of Florida. The water level modelling framework utilized in this study combines a global-scale hydrodynamic model (Global Tide and Surge Model, GTSM-ERA5), a novel ensemble-based tide model, a parameterized wave setup model, and statistical correcti
Authors
Kai Alexander Parker, Li H. Erikson, Jennifer Anne Thomas, Kees Nederhoff, Patrick L. Barnard, Sanne Muis

Science

Klamath Dam Removal Studies

Following the removal of four dams along the Klamath River, more naturally dynamic flow conditions may result in novel water quality, sediment transport, and geomorphic conditions leading to temporary or longer-term ecological impacts. USGS continuous and discrete monitoring data on aspects related to sediment and geomorphic conditions will be integral to post-dam removal assessments and...
link

Klamath Dam Removal Studies

Following the removal of four dams along the Klamath River, more naturally dynamic flow conditions may result in novel water quality, sediment transport, and geomorphic conditions leading to temporary or longer-term ecological impacts. USGS continuous and discrete monitoring data on aspects related to sediment and geomorphic conditions will be integral to post-dam removal assessments and...
Learn More

Delineating the U.S. Extended Continental Shelf

The United States has an interest in knowing the full extent of its continental shelf beyond 200 nautical miles from shore (called the extended continental shelf, or ECS) so that it can better protect, manage and use the resources of the seabed and subsoil contained therein. The USGS contributes to the ECS effort through membership and leadership on the interagency U.S. ECS Task Force, a group...
link

Delineating the U.S. Extended Continental Shelf

The United States has an interest in knowing the full extent of its continental shelf beyond 200 nautical miles from shore (called the extended continental shelf, or ECS) so that it can better protect, manage and use the resources of the seabed and subsoil contained therein. The USGS contributes to the ECS effort through membership and leadership on the interagency U.S. ECS Task Force, a group...
Learn More

USGS Law of the Sea

The USGS Law of the Sea project helps to determine the outer limits of the extended continental shelf (ECS) of the United States. The ECS is that portion of the continental shelf beyond 200 nautical miles. It is an important maritime zone that holds many resources and vital habitats for marine life. Its size may exceed one million square kilometers, encompassing areas in the Arctic, Atlantic...
link

USGS Law of the Sea

The USGS Law of the Sea project helps to determine the outer limits of the extended continental shelf (ECS) of the United States. The ECS is that portion of the continental shelf beyond 200 nautical miles. It is an important maritime zone that holds many resources and vital habitats for marine life. Its size may exceed one million square kilometers, encompassing areas in the Arctic, Atlantic...
Learn More