Geology, Minerals, Energy, and Geophysics Science Center

Home

Scientists with the GMEG Science Center work on issues related to geologic processes, mineral and energy resource potential, and past climate, primarily in the Western United States. The science staff includes Geologists, Geophysicists, Geochemists, Biologists, and Geographic Information Systems specialists located in Arizona, California, Nevada, Oregon, and Washington.

Primary Research Direction - What we do.

GMEGSC focuses on Geologic Mapping, Mineral Resources and Mineral Environmental Health, Landslide Hazards, Energy Resources, Earthquake Hazards, and Land Change Science.

Innovation - How we help.

GMEGSC hosts the USGS Innovation Center, which sponsors work with public and private technology partners to design, test, and bring into operation a new generation of technical and engineering tools to address urgent national natural science issues.

Disciplinary Expertise - How we do it.

GMEGSC utilizes Geologic Mapping and Tectonics, Geophysics, Economic Geology, Geochronology, Sedimentary Basin Studies and Energy Assessments, Landslide Hazards, Geomorphology, Paleoclimatology, and many more processes to complete our work!

News

July 6, 2020

Energy Quarterly - Summer 2020

As summer begins, here are a few highlights in our Energy Quarterly Newsletter.  This edition is a quick overview of the Energy Resources Program's assessments, research, data, and publications.  We also share highlights from our fellow program in the USGS Energy and Minerals Mission Area, the Mineral Resources Program.  

Publications

Publication Thumbnail
Year Published: 2020

Focus areas for data acquisition for potential domestic resources of 11 critical minerals in the conterminous United States, Hawaii, and Puerto Rico—Aluminum, cobalt, graphite, lithium, niobium, platinum-group elements, rare earth elements, tantalum, tin, titanium, and tungsten

In response to a need for information on potential domestic sources of critical minerals, the Earth Mapping Resources Initiative (Earth MRI) was established to identify and prioritize areas for acquisition of new geologic mapping, geophysical data, and elevation data to improve our knowledge of the geologic framework of the United States. Phase 1...

Hammarstrom, Jane M.; Dicken, Connie L.; Day, Warren C.; Hofstra, Albert H.; Drenth, Benjamin J.; Shah, Anjana K.; McCafferty, Anne E.; Woodruff, Laurel G.; Foley, Nora K.; Ponce, David A.; Frost, Thomas P.; Stillings, Lisa L.
Hammarstrom, J.M., Dicken, C.L., Day, W.C., Hofstra, A.H., Drenth, B.J., Shah, A.K., McCafferty, A.E., Woodruff, L.G., Foley, N.K., Ponce, D.A., Frost, T.P., and Stillings, L.L., 2020, Focus areas for data acquisition for potential domestic resources of 11 critical minerals in the conterminous United States, Hawaii, and Puerto Rico—Aluminum, cobalt, graphite, lithium, niobium, platinum-group elements, rare earth elements, tantalum, tin, titanium, and tungsten, chap. B of U.S. Geological Survey, Focus areas for data acquisition for potential domestic sources of critical minerals: U.S. Geological Survey Open-File Report 2019–1023, 67 p., https://doi.org/10.3133/ofr20191023B.

Publication Thumbnail
Year Published: 2020

Geomorphic map of western Whatcom County, Washington

Western Whatcom County has a rich history of glaciation, sea-level change, fluvial erosion and deposition, landsliding, nearby volcanic activity, and human landscape modification. This lidar-derived geomorphic map interprets this history from the form and position of the Earth’s surface.The geomorphic record is broken into nine phases, beginning...

Kovanen, Dori J.; Haugerud, Ralph A.; Easterbrook, Don J.
Kovanen, D.J., Haugerud, R.A., and Easterbrook, D.J., 2020, Geomorphic map of western Whatcom County, Washington: U.S. Geological Survey Scientific Investigations Map 3406, pamphlet 42 p., scale 1:50,000, https://doi.org/10.3133/sim3406.

Publication Thumbnail
Year Published: 2020

Generalized models to estimate carbon and nitrogen stocks of organic soil horizons in Interior Alaska

Boreal ecosystems comprise one tenth of the world’s land surface and contain over 20 % of the global soil carbon (C) stocks. Boreal soils are unique in that its mineral soil is covered by what can be quite thick layers of organic soil. These organic soil layers, or horizons, can differ in their state of decomposition, source vegetation, and...

Manies, Kristen L.; Waldrop, Mark; Harden, Jennifer W.