Skip to main content
U.S. flag

An official website of the United States government

Assessing flood water infiltration and storage in a restored floodplain

October 5, 2025

In urban areas, floodplain restoration is gaining prominence as a strategy for restoring the natural functions of floodplain ecosystems and reducing flood risk. This has spurred research into potential interactions between floodwaters, the hyporheic zone, and the floodplain aquifer. An urban restored stream in Wisconsin, USA, was used as a case study to examine four methods to estimate floodplain infiltration and storage during overbank floods. We characterised flood-related infiltration over a 4-year period from 2018 through 2021 by simultaneously and continuously measuring groundwater levels and vertical temperature profiles with stream water levels linked to high-resolution flood inundation maps. High-resolution topographic data helped to quantify surface floodplain storage and the unsaturated soil volume relative to flood stage. Infiltration estimates from the simple methods align well with those from the more complex methods; however, the complex methods provide additional insights about the factors influencing infiltration. Results from all methods indicate that the volume of water that vertically infiltrates during floods is likely small relative to the total volume of the flood, with 0.08%–0.52% of flood water infiltrating into the floodplain, on average. Spatially variable vertical hydraulic gradients, driven by flood depth, groundwater level, and permeability, imply heterogeneous patterns of infiltration across the floodplain. Gradients favourable for infiltration typically occurred during the onset of flooding but, over the study period, were mostly (98% of the time) favourable for groundwater discharge to the channel (non-flood periods). These findings highlight the importance of considering surface-groundwater dynamics, floodplain soils, and unsaturated floodplain volume in defining the benefits of floodplain infiltration for flood attenuation.

Publication Year 2025
Title Assessing flood water infiltration and storage in a restored floodplain
DOI 10.1002/hyp.70281
Authors Nicholas Corson-Dosch, Faith Fitzpatrick, Paul Juckem, James Blount, Wonsook Ha
Publication Type Article
Publication Subtype Journal Article
Series Title Hydological Processes
Index ID 70273139
Record Source USGS Publications Warehouse
USGS Organization Upper Midwest Water Science Center
Was this page helpful?