Upper Midwest Water Science Center

Home

The Upper Midwest Water Science Center collects high-quality hydrologic data and conducts unbiased, scientifically sound research on water resources in Michigan, Minnesota, and Wisconsin. We strive to meet the changing needs of those who use our information—from the distribution, availability, and quality of our water resources to topic-oriented research that addresses current hydrological issues.

Current conditions in MI, MN, and WI

Current conditions in MI, MN, and WI

Explore real-time streamflow, groundwater, and water-quality conditions and access data with our interactive map application.

View conditions

Message from the Director

Message from the Director

Learn more about the Upper Midwest Water Science Center from John Walker, our Center Director.

Read more

News

Date published: February 19, 2019

Human Bacteria, Viruses from Sewage Found in Some Milwaukee Streams

Two types of human-associated bacteria and three types of human viruses were detected in Milwaukee streams within the Menomonee River watershed, according to a recent study led by the U.S. Geological Survey.

Date published: December 20, 2018

Design of Private Wells Can Lead to Safer Drinking Water in Minnesota

Minnesota well drillers and landowners will now have new tools to help predict arsenic concentrations in drinking water when building domestic water wells, according to a recent U.S. Geological Survey study.

Date published: March 7, 2018

USGS Flood Experts Respond to High Water in Central, Northeastern U.S.

Crews from the U.S. Geological Survey have been in the field for weeks measuring flooding in the Midwest and in the Mississippi River watershed, and more recently flooding and storm tides on the Northern Atlantic coast, as higher temperatures, heavy rain, snowmelt and nor’easters affected numerous states. 

Publications

Publication Thumbnail
Year Published: 2019

Basin, climatic, and irrigation factors associated with median summer water yields for streams in Southwestern Michigan, 1945-2015

Median summer water yields and resultant flows for streams are used in Michigan to regulate large water withdrawals to help prevent negative effects on characteristic fish populations. Large water withdrawals commonly are associated with irrigation in rural areas. In an earlier statewide report, an index-flow statistic for the period of record,...

Holtschlag, David J.
Holtschlag, D.J., 2019, Basin, climatic, and irrigation factors associated with median summer water yields for streams in southwestern Michigan, 1945–2015: U.S. Geological Survey Scientific Investigations Report 2018–5071, 23 p., https://doi.org/10.3133/sir20185071.

Publication Thumbnail
Year Published: 2019

Biogeochemical and physical processes controlling mercury methylation and bioaccumulation in Lake Powell, Glen Canyon National Recreation Area, Utah and Arizona, 2014 and 2015

Mercury monitoring results from about 300 Morone saxatilis (striped bass) muscle tissue samples collected by the State of Utah from Lake Powell resulted in a Utah/Arizona fish consumption advisory issued in 2012 for approximately the lower 100 kilometers of the reservoir. Chemical, physical, and biological data were collected during two synoptic...

Naftz, David L.; Marvin-DiPasquale, Mark; Krabbenhoft, David P.; Aiken, George; Boyd, Eric S.; Conaway, Christopher H.; Ogorek, Jacob M.; Anderson, Gregory M.
Naftz, D.L., Marvin-DiPasquale, M., Krabbenhoft, D.P., Aiken, G., Boyd, E.S., Conaway, C.H., Ogorek, J., and Anderson, G.M., 2019, Biogeochemical and physical processes controlling mercury methylation and bioaccumulation in Lake Powell, Glen Canyon National Recreation Area, Utah and Arizona, 2014 and 2015: U.S. Geological Survey Open-File Report 2018–1159, 81 p., https://doi.org/10.3133/ofr20181159.

Publication Thumbnail
Year Published: 2019

Spatial distribution of nutrients, chloride, and suspended sediment concentrations and loads determined by using different sampling methods in a cross section of the Trenton Channel of the Detroit River, Michigan, November 2014–November 2015

The Detroit River separates the United States and Canada as it flows from Lake St. Clair to Lake Erie. The Trenton Channel is a 13-kilometer-long branch of the Detroit River that flows to the west of Grosse Ile before rejoining the Detroit River near its mouth, just before the Detroit River flows into Lake Erie. The U.S. Environmental Protection...

Totten, Alexander R.; Duris, Joseph W.
Totten, A.R., and Duris, J.W., 2019, Spatial distribution of nutrients, chloride, and suspended sediment concentrations and loads determined by using different sampling methods in a cross section of the Trenton Channel of the Detroit River, Michigan, November 2014–November 2015: U.S. Geological Survey Scientific Investigations Report 2018–5141, 25 p., https://doi.org/10.3133/sir20185141.