Skip to main content
U.S. flag

An official website of the United States government

May 12, 2025

Learn about the Feasibility of Using Lidar-Derived Digital Elevation Models for Gravity Data Reduction

Gravity data require submeter elevation accuracy for data processing, and differential global navigation satellite system (dGNSS) equipment is commonly used to acquire three-dimensional positional data to achieve such accuracy. However, lidar (light detection and ranging) data are commonly used to develop digital elevation models (DEMs) of Earth’s surface. Therefore, using elevations from lidar-derived DEMs for gravity-data acquisition and reduction may improve field efficiency and reduce cost. This study examines the feasibility of using DEMs for gravity-data reduction by comparing dGNSS elevation data from 435 gravity stations in Michigan, Wyoming, and Colorado with their respective DEM elevations. The results show that the average difference between DEM and dGNSS elevations is 13 centimeters (cm) and that 93 percent of those differences are less than 50 cm, even in areas with steep terrain. Because an elevation discrepancy of 50 cm corresponds to an error of roughly 0.1 milligals (mGal) in the simple Bouguer gravity anomaly, the results suggest that lidar-derived DEMs are a viable source for acquiring the elevation data needed to process gravity data, thus improving both the cost and efficiency of data collection for regional surveys where an accuracy of less than 1.0 mGal is desired.

Was this page helpful?