Skip to main content
U.S. flag

An official website of the United States government

Dissolved organic matter enhances microbial mercury methylation under sulfidic conditions

January 1, 2012

Dissolved organic matter (DOM) is generally thought to lower metal bioavailability in aquatic systems due to the formation of metal–DOM complexes that reduce free metal ion concentrations. However, this model may not be pertinent for metal nanoparticles, which are now understood to be ubiquitous, sometimes dominant, metal species in the environment. The influence of DOM on Hg bioavailability to microorganisms was examined under conditions (0.5–5.0 nM Hg and 2–10 μM sulfide) that favor the formation of β-HgS(s) (metacinnabar) nanoparticles. We used the methylation of stable-isotope enriched 201HgCl2 by Desulfovibrio desulfuricans ND132 in short-term washed cell assays as a sensitive, environmentally significant proxy for Hg uptake. Suwannee River humic acid (SRHA) and Williams Lake hydrophobic acid (WLHPoA) substantially enhanced (2- to 38-fold) the bioavailability of Hg to ND132 over a wide range of Hg/DOM ratios (9.4 pmol/mg DOM to 9.4 nmol/mg DOM), including environmentally relevant ratios. Methylmercury (MeHg) production by ND132 increased linearly with either SRHA or WLHPoA concentration, but SRHA, a terrestrially derived DOM, was far more effective at enhancing Hg-methylation than WLHPoA, an aquatic DOM dominated by autochthonous sources. No DOM-dependent enhancement in Hg methylation was observed in Hg–DOM–sulfide solutions amended with sufficient l-cysteine to prevent β-HgS(s) formation. We hypothesize that small HgS particles, stabilized against aggregation by DOM, are bioavailable to Hg-methylating bacteria. Our laboratory experiments provide a mechanism for the positive correlations between DOC and MeHg production observed in many aquatic sediments and wetland soils.

Publication Year 2012
Title Dissolved organic matter enhances microbial mercury methylation under sulfidic conditions
DOI 10.1021/es203658f
Authors Andrew M. Graham, George R. Aiken, Cynthia Gilmour
Publication Type Article
Publication Subtype Journal Article
Series Title Environmental Science & Technology
Index ID 70180388
Record Source USGS Publications Warehouse
USGS Organization National Research Program - Central Branch