Skip to main content
U.S. flag

An official website of the United States government

Hydrogeology and simulation of flow between the alluvial and bedrock aquifers in the upper Black Squirrel Creek basin, El Paso County, Colorado

August 1, 1995

Anticipated increases in pumping from the bedrock aquifers in El Paso County potentially could affect the direction and rate of flow between the alluvial and bedrock aquifers and lower water levels in the overlying alluvial aquifer. The alluvial aquifer underlies about 90 square miles in the upper Black Squirrel Creek Basin of eastern El Paso County. The alluvial aquifer consists of unconsolidated alluvial deposits that unconformably overlie siltstones, sandstones, and conglomerate (bedrock aquifers) and claystone, shale, and coal (bedrock confining units) of the Denver Basin. The bedrock aquifers (Dawson, Denver, Arapahoe, and Laramie-Fox Hills aquifers) are separated by confining units (upper and lower Denver and the Laramie confining units) and overlie a relatively thick and impermeable Pierre confining unit. The Pierre confining unit is assumed to be a no-flow boundary at the base of the alluvial/ bedrock aquifer system.

During 1949-90, substantial water-level declines, as large as 50 feet, in the alluvial aquifer resulted from withdrawals from the alluvial aquifer for irrigation and municipal supplies. Average recharge to the alluvial aquifer from infiltration of precipitation and surface water was an estimated 11.97 cubic feet per second and from the underlying bedrock aquifers was an estimated 0.87 cubic foot per second.

Water-level data from eight bedrock observation wells and eight nearby alluvial wells indicate that, locally, the alluvial and bedrock aquifers probably are hydraulically connected and that the alluvial aquifer in the upper Black Squirrel Creek Basin receives recharge from the Denver and Arapahoe aquifers but-locally recharges the Laramie-Fox Hills aquifer.

Subsurface-temperature profiles were evaluated as a means of estimating specific discharge across the bedrock surface (the base of the alluvial aquifer). However, assumptions of the analytical method were not met by field conditions and, thus, analyses of subsurface-temperature profiles did not reliably estimate specific discharge across the bedrock surface. The vertical hydraulic diffusivity of a siltstone and sandstone in the lower Denver confining unit was estimated, by an aquifer test, to be about 8 x 10'4 square foot per day.

Physical and chemical characteristics of water from the bedrock aquifers in the study area generally differ from the physical and chemical characteristics of water from the alluvial aquifer, except for the physical and chemical characteristics of water from one bedrock well, which is completed in the Laramie-Fox Hills aquifer. In the southern part of the study area, physical and chemical characteristics of ground water indicate downward flow of water from the alluvial aquifer to the Laramie-Fox Hills aquifer.

A three-dimensional numerical model was used to evaluate flow of water between the alluvial aquifer and underlying bedrock. Simulation of steady-state conditions indicates that flow from the bedrock aquifers to the alluvial aquifer was about 7 percent of recharge to the alluvial aquifer, about 0.87 cubic foot per second. The potential effects of withdrawal from the alluvial and bedrock aquifers at estimated (October 1989 to September 1990) rates and from the bedrock aquifers at two larger hypothetical rates were simulated for a 50-year projection period. The model simulations indicate that water levels in the alluvial aquifer will decline an average of 8.6 feet after 50 years of pumping at estimated October 1989 to September 1990 rates. Increases in withdrawals from the bedrock aquifers in El Paso County were simulated to: (1) Capture flow that currently discharges from the bedrock aquifers to springs and streams in upland areas and to the alluvial aquifer, (2) induce flow downward from the alluvial aquifer, and (3) accelerate the rate of waterlevel decline in the alluvial aquifer.

Publication Year 1995
Title Hydrogeology and simulation of flow between the alluvial and bedrock aquifers in the upper Black Squirrel Creek basin, El Paso County, Colorado
DOI 10.3133/wri944238
Authors Kenneth R. Watts
Publication Type Report
Publication Subtype USGS Numbered Series
Series Title Water-Resources Investigations Report
Series Number 94-4238
Index ID wri944238
Record Source USGS Publications Warehouse
USGS Organization Earth Science Information Center