Skip to main content
U.S. flag

An official website of the United States government

Calibration of GOES-VISSR, visible-band satellite data and its application to the analysis of a dust storm at Owens Lake, California

January 1, 1996

As part of a joint Russian/American dust-storm experiment, GOES-VISSR (Geostationary Operational Environmental Satellite, Visible-Infrared Spin-Scan Radiometer), data from a visible-band satellite image of a large dust storm emanating from Owens Lake, California were acquired on March 10 and 11, 1993. The satellite data were calibrated to targets of known ground reflectance factors and processed with radiative transfer techniques to yield aerosol (dust) optical depth at those stages of the dust storm when concurrent ground-based measurements of optical depth were made. Calibration of the satellite data is crucial for comparing surficial changes in remotely sensed data acquired over a period of time from the same area and for determining accurate concentrations of atmospheric aerosols using radiative transfer techniques.

The calibration procedure forces the distribution of visible-band, DN (digital number) values, acquired on July 1, 1992, at 1731 GMT from the GOES-VISSR sensor over a large test area, to match the distribution of visible-band, DN values concurrently acquired from a Landsat MSS (Multispectral Scanner) sensor over the same test area; the Landsat MSS DN values were directly associated with reflectance factors measured from ground targets. The calibrated GOES-VISSR data for July 1, 1992, were then used to calibrate other GOES-VISSR data acquired on March 10 and 11, 1993, during the dust storm. Uncertainties in location of ground targets, bi-directional reflectance and atmospheric attenuation contribute an error of approximately ±0.02 in the satellite-inferred ground reflectance factors.

On March 11 at 1031 PST the satellite-received radiances during the peak of the storm were 3 times larger than predicted by our radiative transfer model for a pure clay dust plume of infinite optical depth. This result supported ground-based measurements that the plume at that time was composed primarily of large salt grains, probably sodium sulfate, which could not be properly characterized in our radiative transfer model. Further, the satellite data showed that the salt fell out of the plume within 35 km from the source. Finer-grained, clay dust was observed to extend beyond the salt-laden plume and was the major component of the dust plume after 1131 PST, when erosion of the salt crust on Owens Lake ceased. By 1331 and 1401 PST satellite-inferred, optical depths compared favorably with measurements concurrently acquired at the ground. Uncertainties in bi-directional reflectance, atmospheric attenuation, and locating ground points in the satellite data manifest errors between the inferred and measured optical depths in the range of 20 to 50%; these errors would be much greater without the calibration of the GOES-VISSR data.

Changes in satellite-inferred reflectance factors over the lake bed during the course of the storm showed that 76 km2 of the surface was disrupted during the March 11 storm, suggesting as much as 76 × 103 m3 of crustal material were displaced for each millimeter of several estimated to have been moved during the storm; an unknown fraction of the displaced material was suspended. The satellite data also showed dust fallout on mountain snowfields. Whereas fallout may have removed most of the salt, satellite data acquired at 1631 PST, when the plume had a large brightness contrast with the ground, showed that it covered over 2500 km2 and contained at least 1.6 × 109 g of sediment. For such a small source area, the dust represents a substantial contribution to the regional and global load of aerosols.

Publication Year 1996
Title Calibration of GOES-VISSR, visible-band satellite data and its application to the analysis of a dust storm at Owens Lake, California
DOI 10.1016/0169-555X(95)00105-E
Authors D. J. MacKinnon, P.S. Chavez, R. S. Fraser, T.C. Niemeyer, Dale A. Gillette
Publication Type Article
Publication Subtype Journal Article
Series Title Geomorphology
Index ID 70019027
Record Source USGS Publications Warehouse