Skip to main content
U.S. flag

An official website of the United States government

Tracking mangrove condition changes using dense Landsat time series

October 11, 2024

Mangroves in tropical and subtropical coasts are subject to episodic disturbances, notably from severe storms, leading to potential widespread vegetation mortality. The ability of vegetation to recover varies, and with disturbances becoming more frequent and severe, it is vital to track and project vegetation responses to support management and policy decisions. Prior studies have largely focused on binary mangrove mapping (i.e., presence or absence), while tracking conditions and condition change have not received sufficient attention. In this paper, we demonstrate a method based on dense time series Landsat images for continuous monitoring of mangrove conditions, where we track three kinds of post-disturbance mangrove conditions, including disturbed (disturbed, with rebound to the previous state within one growing season), recovering (undergoing natural recovery in longer than one growing season), and declining (showing long-term decline after disturbance). The method starts with disturbance detection using the DEtection and Characterization Of the tiDal wEtland change (DECODE) algorithm, an existing dense time series model designed to detect disturbances in tidal wetlands with adaptation to tidal fluctuations. This algorithm is well suited for the detection of tidal wetland disturbances but does not provide satisfactory post-disturbance monitoring results, due to the substantial variability in post-disturbance Landsat observations. To better monitor post-disturbance conditions, a new time series fitting approach, DECODER (DECODE and Recovery), is proposed for the recovery stage. Additionally, for temporal segments divided by disturbance events, we built a random forest classifier with temporal-spectral variables derived from the time series model to characterize mangrove conditions. Employing this approach in Florida's mangroves, we generated condition maps, such as dieback and recovery, with an overall accuracy of approximately 97.96 ± 0.86- [95 % confidence intervals]. Comparing post-hurricane conditions in Florida revealed that the increased frequency and severity of disturbances are challenging mangrove resilience, potentially diminishing their ability to recover and sustain ecosystem functions.

Publication Year 2024
Title Tracking mangrove condition changes using dense Landsat time series
DOI 10.1016/j.rse.2024.114461
Authors Xiucheng Yang, Zhe Zhu, Kevin D. Kroeger, Shi Qiu, Scott Covington, Jeremy Conrad, Zhiliang Zhu
Publication Type Article
Publication Subtype Journal Article
Series Title Remote Sensing of Environment
Index ID 70261240
Record Source USGS Publications Warehouse
USGS Organization Office of the AD Ecosystems
Was this page helpful?