Science and Products
Filter Total Items: 22
Yucaipa valley integrated hydrological model
IntroductionThe hydrologic system in the Yucaipa Valley watershed (YVW) was simulated using the coupled Groundwater and Surface-water FLOW model (GSFLOW; Markstrom and others, 2008). This study uses version 2.0 of GSFLOW, which is a combination of the Precipitation-Runoff Modeling System (PRMS; Markstrom and others, 2015), and the Newton-Raphson formulation of the Modular Groundwater-Flow Model (M
Simulation of groundwater and surface-water resources of the San Antonio Creek Valley watershed, Santa Barbara County, California
In the San Antonio Creek Valley watershed (SACVW), western Santa Barbara County, California, groundwater is the primary source of water for agricultural irrigation, the town of Los Alamos, and supplemental water to Vandenberg Space Force Base (VSFB). Groundwater pumpage has increased since the 1970s as non-irrigated agricultural land has been converted to irrigated land and as local pumping for mu
Geohydrology, geochemistry, and numerical simulation of groundwater flow and land subsidence in the Bicycle Basin, Fort Irwin National Training Center, California
Groundwater pumping from Bicycle Groundwater Basin (referred to as Bicycle Basin) in the Fort Irwin National Training Center, California, began in 1967. From 1967 to December 2010, about 46,000 acre-feet of water had been pumped from the basin and transported to the Irwin Basin. During this time, not only did water levels in the basin decline by as much as 100 feet, the quality of the groundwater
Water-resources and land-surface deformation evaluation studies at Fort Irwin National Training Center, Mojave Desert, California
The U.S. Army Fort Irwin National Training Center (NTC), in the Mojave Desert, obtains all of its potable water supply from three groundwater basins (Irwin, Langford, and Bicycle) within the NTC boundaries (fig. 1; California Department of Water Resources, 2003). Because of increasing water demands at the NTC, the U.S. Geological Survey (USGS), in cooperation with the U.S. Army, completed several
Geohydrologic and water-quality data in the vicinity of the Rialto-Colton Fault, San Bernardino, California
The Rialto-Colton Basin is in western San Bernardino County, about 60 miles east of Los Angeles, California. The basin is bounded by faults on the northeast and southwest sides and contains multiple barriers to groundwater flow. The structural geology of the basin leads to complex hydrology. Between 2001 and 2008, in an effort to better understand the complex hydrologic system of the Rialto-Colton
Simulation of groundwater and surface-water resources of the Santa Rosa Plain watershed, Sonoma County, California
Water managers in the Santa Rosa Plain face the challenge of meeting increasing water demand with a combination of Russian River water, which has uncertainties in its future availability; local groundwater resources; and ongoing and expanding recycled water and water from other conservation programs. To address this challenge, the U.S. Geological Survey, in cooperation with the Sonoma County Water
Modeled ground water age distributions
The age of ground water in any given sample is a distributed quantity representing distributed provenance (in space and time) of the water. Conventional analysis of tracers such as unstable isotopes or anthropogenic chemical species gives discrete or binary measures of the presence of water of a given age. Modeled ground water age distributions provide a continuous measure of contributions from di
Aquifer susceptibility to perchlorate contamination in a highly urbanized environment
Perchlorate contamination from anthropogenic sources has been released into the Rialto-Colton, California, USA, groundwater flow system since the 1940s during its production, distribution, storage, and use. Preliminary analysis of lithological, geophysical, and water-chemistry data provided new understanding of the pathways of perchlorate migration that aid in assessing the susceptibility of drink
Use of a groundwater flow model to assess the location, extent, and hydrologic properties of faults in the Rialto-Colton Basin, California
Faults within a groundwater basin can greatly influence the direction of groundwater flow and contaminant migration. Existing steady-state and transient groundwater flow models were used to assess the location, extent, and hydrologic properties of two alternative fault configurations within the Rialto-Colton basin. Adjustments were made to the hydrologic properties of the faults and the location o
Hydrology, description of computer models, and evaluation of selected water-management alternatives in the San Bernardino area, California
The San Bernardino area of southern California has complex water-management issues. As an aid to local water managers, this report provides an integrated analysis of the surface-water and ground-water systems, documents ground-water flow and constrained optimization models, and provides seven examples using the models to better understand and manage water resources of the area. As an aid to invest
Numerical Simulation of Ground-Water Flow and Assessment of the Effects of Artificial Recharge in the Rialto-Colton Basin, San Bernardino County, California
The Rialto?Colton Basin, in western San Bernardino County, California, was chosen for storage of imported water because of the good quality of native ground water, the known storage capacity for additional ground-water storage in the basin, and the availability of imported water. To supplement native ground-water resources and offset overdraft conditions in the basin during dry periods, artificial
Science and Products
- Publications
Filter Total Items: 22
Yucaipa valley integrated hydrological model
IntroductionThe hydrologic system in the Yucaipa Valley watershed (YVW) was simulated using the coupled Groundwater and Surface-water FLOW model (GSFLOW; Markstrom and others, 2008). This study uses version 2.0 of GSFLOW, which is a combination of the Precipitation-Runoff Modeling System (PRMS; Markstrom and others, 2015), and the Newton-Raphson formulation of the Modular Groundwater-Flow Model (MSimulation of groundwater and surface-water resources of the San Antonio Creek Valley watershed, Santa Barbara County, California
In the San Antonio Creek Valley watershed (SACVW), western Santa Barbara County, California, groundwater is the primary source of water for agricultural irrigation, the town of Los Alamos, and supplemental water to Vandenberg Space Force Base (VSFB). Groundwater pumpage has increased since the 1970s as non-irrigated agricultural land has been converted to irrigated land and as local pumping for muGeohydrology, geochemistry, and numerical simulation of groundwater flow and land subsidence in the Bicycle Basin, Fort Irwin National Training Center, California
Groundwater pumping from Bicycle Groundwater Basin (referred to as Bicycle Basin) in the Fort Irwin National Training Center, California, began in 1967. From 1967 to December 2010, about 46,000 acre-feet of water had been pumped from the basin and transported to the Irwin Basin. During this time, not only did water levels in the basin decline by as much as 100 feet, the quality of the groundwaterWater-resources and land-surface deformation evaluation studies at Fort Irwin National Training Center, Mojave Desert, California
The U.S. Army Fort Irwin National Training Center (NTC), in the Mojave Desert, obtains all of its potable water supply from three groundwater basins (Irwin, Langford, and Bicycle) within the NTC boundaries (fig. 1; California Department of Water Resources, 2003). Because of increasing water demands at the NTC, the U.S. Geological Survey (USGS), in cooperation with the U.S. Army, completed severalGeohydrologic and water-quality data in the vicinity of the Rialto-Colton Fault, San Bernardino, California
The Rialto-Colton Basin is in western San Bernardino County, about 60 miles east of Los Angeles, California. The basin is bounded by faults on the northeast and southwest sides and contains multiple barriers to groundwater flow. The structural geology of the basin leads to complex hydrology. Between 2001 and 2008, in an effort to better understand the complex hydrologic system of the Rialto-ColtonSimulation of groundwater and surface-water resources of the Santa Rosa Plain watershed, Sonoma County, California
Water managers in the Santa Rosa Plain face the challenge of meeting increasing water demand with a combination of Russian River water, which has uncertainties in its future availability; local groundwater resources; and ongoing and expanding recycled water and water from other conservation programs. To address this challenge, the U.S. Geological Survey, in cooperation with the Sonoma County WaterModeled ground water age distributions
The age of ground water in any given sample is a distributed quantity representing distributed provenance (in space and time) of the water. Conventional analysis of tracers such as unstable isotopes or anthropogenic chemical species gives discrete or binary measures of the presence of water of a given age. Modeled ground water age distributions provide a continuous measure of contributions from diAquifer susceptibility to perchlorate contamination in a highly urbanized environment
Perchlorate contamination from anthropogenic sources has been released into the Rialto-Colton, California, USA, groundwater flow system since the 1940s during its production, distribution, storage, and use. Preliminary analysis of lithological, geophysical, and water-chemistry data provided new understanding of the pathways of perchlorate migration that aid in assessing the susceptibility of drinkUse of a groundwater flow model to assess the location, extent, and hydrologic properties of faults in the Rialto-Colton Basin, California
Faults within a groundwater basin can greatly influence the direction of groundwater flow and contaminant migration. Existing steady-state and transient groundwater flow models were used to assess the location, extent, and hydrologic properties of two alternative fault configurations within the Rialto-Colton basin. Adjustments were made to the hydrologic properties of the faults and the location oHydrology, description of computer models, and evaluation of selected water-management alternatives in the San Bernardino area, California
The San Bernardino area of southern California has complex water-management issues. As an aid to local water managers, this report provides an integrated analysis of the surface-water and ground-water systems, documents ground-water flow and constrained optimization models, and provides seven examples using the models to better understand and manage water resources of the area. As an aid to investNumerical Simulation of Ground-Water Flow and Assessment of the Effects of Artificial Recharge in the Rialto-Colton Basin, San Bernardino County, California
The Rialto?Colton Basin, in western San Bernardino County, California, was chosen for storage of imported water because of the good quality of native ground water, the known storage capacity for additional ground-water storage in the basin, and the availability of imported water. To supplement native ground-water resources and offset overdraft conditions in the basin during dry periods, artificial