Where do acid-sulfate hot springs come from and why are they important?

Release Date:

Yellowstone hosts thousands of thermal features which have diverse chemistries and origins. The most iconic features, like Old Faithful, have neutral to alkaline pH. Some Yellowstone features, however, can be acidic enough to break down the very rock that hosts them!

Yellowstone Caldera Chronicles is a weekly column written by scientists and collaborators of the Yellowstone Volcano Observatory. This week's contribution is from geologist Pat Shanks, Scientist Emeritus with the U.S. Geological Survey.

Map of Yellowstone National Park showing locations of thermal basins that host hot springs, geysers, and mudpots.

Map of Yellowstone National Park showing locations of thermal basins that host hot springs, geysers, and mudpots.  Orange-shaded areas are acid-sulfate areas.  Yellowstone Caldera margin shown as bold dashed line.

(Public domain.)

Anyone who experiences Yellowstone, especially on a cool or cold day, undoubtedly notices many examples of steaming hot springs, geysers, mudpots, and fumaroles.  Everything seems to be steaming in Yellowstone, but some thermal vents—especially fumaroles and mudpots—are directly related to rising steam, which result in the formation of acid-sulfate fluids. 

In Yellowstone National Park, three types of thermal features exist.  Alkaline-chloride features, like Old Faithful and Grand Prismatic Spring, are associated with cones made of sinter or colorful pools and have a slightly basic pH.  A second type are calcium-carbonate features, like those at Mammoth Hot Springs, that form when hot water interacts with limestone in the underlying rocks. The third category of thermal feature is acidic, with low pH values that eat the very rock that hosts them!

Steam vents along the Yellowstone River near Mud Volcano thermal area

Steam vents along the Yellowstone River near Mud Volcano thermal area, Yellowstone National Park.

(Credit: Pat Shanks, U.S. Geological Survey. Public domain.)

Acid-sulfate fluids occur throughout the park but are found most commonly in the northeastern part of the caldera, in the vicinity of the Grand Canyon of the Yellowstone River, and north of the caldera along the Norris-Mammoth corridor.  A distinguishing characteristic of acid-sulfate fluids is a direct relation to steam-rich thermal fluids, also called vapor-dominated or acid-steam fluids.

Where does the steam come?  To understand this, let’s start with the deepest and hottest known hydrothermal (hot water) fluids in Yellowstone.  Geochemical studies of surficial hot springs have indicated that deep thermal fluids beneath the Yellowstone Caldera reach temperatures of about 350℃ (662℉) and have chloride (Cl-) content of about 325 parts per million (ppm).  The deep alkaline-chloride fluids are the hottest known fluids and are the fluids that power the geysers in the Upper, Middle, and Lower Geyser Basins, and elsewhere.  The deeply circulated alkaline-chloride fluids also carry dissolved gases, mainly carbon dioxide (CO2) and hydrogen sulfide (H2S) that are degassed from the underlying magma chamber.  The deep alkaline-chloride fluids are buoyant because they have lower density than overlying colder fluids and rise toward the surface through pore spaces and fractures to eventually become hot springs and geysers.  As the fluids rise, pressure decreases and eventually the fluids reach the boiling point of water.  When this happens, the fluids boil and very low-density steam separates from the alkaline-chloride liquid with the gases (CO2 and H2S) joining the steam phase. 

Why is the steam acidic?  As the steam separates and rises it usually (but not always) follows a different path from its parent alkaline-chloride fluid (in some places like Beryl Spring, however, the fumaroles and alkaline-chloride springs are adjacent to, or even on top of, one another!).  At the surface, steam and other gases form fumaroles (gas vents) that may evolve into mud pots.  Mud pots are places where steam condensate mixes with air and local surface water.  Carbon dioxide in the condensed fluid forms carbonic acid (H2CO3) and hydrogen sulfide can react with oxygen to form sulfuric acid (H2SO4), resulting in acidic pH as low as 2.  These fluids, aptly called acid-sulfate fluids, rapidly alter surrounding rocks and surface sediment to form clay minerals, creating mudpots with a variety of colors and consistency.

Mudpot located near Mud Volcano in Yellowstone National Park

Mudpot located in the Mud Volcano thermal area of Yellowstone National Park.  This type of thermal feature indicates an acid-sulfate system.

(Credit: Pat Shanks, U.S. Geological Survey. Public domain.)

Why are steam vents and acid-sulfate fluids important?

  1. Steam has high heat content compared to liquid water, and steam vents contribute greatly to the heat flux from Yellowstone thermal basins.  Monitoring heat flux is important for understanding long term evolution of the Yellowstone system.
  2. CO2 transported with steam mostly escapes at the surface and contributes to the volcanic CO2 flux, which is important in understanding changes in the Yellowstone magmatic and hydrothermal system over time. 
  3. Acid fluids and extreme alteration related to acid-sulfate fluids also lead to local hazards and infrastructure destruction, and thus need to be studied.

Yellowstone’s acid-sulfate fluids are a defining characteristic of the park, creating such iconic features as Mud Volcano and Artists Paint Pots.  These fluids are also at the core of the new thermal area that formed near Tern Lake over the past 20 years, changing once pristine forest into clay as the acid gases eat the once solid rock.  While quite different from the non-acidic springs that have resulted in the formation of geysers and springs like Old Faithful and Grand Prismatic Spring, the acidic features nevertheless have the same origin—deep water that is heated by the underlying magma chamber and charged with magmatic gases.

Related Content

Filter Total Items: 6
Date published: August 17, 2020

Why do most geyser- and sinter-producing hot springs have alkaline (basic) pH?

It’s a common misconception that all geysers and hot springs in Yellowstone are acidic.  Some are, but the water that comes out of many of Yellowstone’s most iconic features, like Old Faithful and Grand Prismatic Spring, is actually basic.  But why

Date published: January 13, 2020

The complicated plumbing of hot springs and steam vents in Yellowstone National Park

Exploration and sampling of Yellowstone's thermal areas indicates that Yellowstone's hot springs often have surprisingly complex plumbing systems. It is not uncommon to find hot spring pools, which have one type of chemistry, and steam vents, which have totally different chemistry, located in close proximity—or even occupying the same space! Learn what happens when these mix or overlap.

Date published: December 16, 2019

The diverse chemistry of Yellowstone's hydrothermal features

Investigations into the water chemistry of Yellowstone's geysers, hot springs, mud pots, and streams and rivers have been conducted by the U.S. Geological Survey dating back to 1888.

Date published: August 26, 2019

Yellowstone's newest thermal area: An up-close and personal visit!

USGS and Yellowstone National Park scientists visited a newly discovered thermal site in the park. They mapped the extent of the area and took the temperature of the subsurface using a handheld thermistor.

Date published: July 22, 2019

Alterations to go! Hydrothermal alteration in Yellowstone

What is hydrothermal alteration, and why is it important? Most visitors to Yellowstone National Park are only vaguely aware of hydrothermal (hot water) alteration (chemical and mineral reactions with hot water).

Date published: June 4, 2018

Yellowstone's active hydrothermal system - What's with the hot water?

Steamboat Geyser in Norris Geyser Basin has been measured as the World's tallest geyser (70-120 meters; 230-294 feet).