T.N. Titus (Oak Ridge Associated Universities), H.H. Kieffer, K.F. Mullins (U.S. Geological Survey)
he recession of the south polar cap has been observed telescopically and from spacecraft in both the visible and thermal regions. Although a simple cap-edge versus time plot has commonly been used, without regard as to the longitude of measurement, Mariner 9, Viking, and HST observations clearly show that the retreating edge is irregular and asymmetric. The data used in this analysis is from the Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES). Repeated TES coverage over the period Ls 185 through Ls 270 acquired much of the cap recession.
During this period of time, TES was taking data in the array normal spin (ANS) mode, scanning across the planet as the satellite made one complete roll every 100 minutes. Therefore, the data was irregularly sampled in both space and time. Also, because of the changes in the spacecraft orbit, the spatial resolution of the data is variable, ranging from 25 to 125 kilometers. We have constructed a map of the south polar region that contains the date when the last CO2 sublimates, hereafter called the crocus date. The crocus date is based on sliding a representative temperature - versus - time curve along the observations for each location in the polar region and selecting the season of maximum temperature change. Recessions in the classic area “ Mountains of Mitchell ” are delayed significantly, disappearing approximately at Ls 260. High resolution (26 km) brightness temperature data at Ls244 confirms that solid CO2 is the dominant cold component. One region (approx. 72-80 S, 180-250 W) within the annual polar cap became dark long before the temperatures begin to rise; in comparison with most areas that showed a gradual increase in brightness until a rapid darkening as the temperature rose well above CO2 frost value. This dark region, here after called the Cryptic region, appears to be a major contributor to the asymmetric polar recession. The cause of the Cryptic region's unexpected behavior is currently under study.
This plot shows the cap edge as a function of season. The data used was 30 µ mpre-mapping TES data. The contour lines are spaced at 10 degrees of Ls, starting with 215 as the dark blue contour. A small region between Ls 275 and Ls 295 has been shaded to indicate that this region has a large error in our estimate of the cap edge. A table below has been provided so that you can easily convert Ls into a Earth calendar date.
CONVERSION TABLE FROM Ls TO EARTH CALENDAR DATE
Ls Last Martian Year> The Martian Year
215 Nov 10th, 1997 Sept 28th, 1999
225 Nov 26th, 1997 Oct 14th, 1999
235 Dec 12th, 1997 Oct 30th, 1999
245 Dec 28th, 1997 Nov 15th, 1999
255 Jan 13th, 1998 Dec 1st, 1999
265 Jan 29th, 1998 Dec 17th, 1999
275 Feb 14th, 1998 Jan 2nd, 2000
This web page is based on a paper presented to the Division of Planetary Sciences in Madison, WI, on August 11th, 1998: TES Observations of the South Pole, BAAS, vol. 30, no. 3, 1049-1050.
Below are other science projects associated with this project.
SP Cryptic Region
South Pole
All About Ice
Consortium Meetings
Mars Ice
Mars Ice Consortium
T.N. Titus (Oak Ridge Associated Universities), H.H. Kieffer, K.F. Mullins (U.S. Geological Survey)
he recession of the south polar cap has been observed telescopically and from spacecraft in both the visible and thermal regions. Although a simple cap-edge versus time plot has commonly been used, without regard as to the longitude of measurement, Mariner 9, Viking, and HST observations clearly show that the retreating edge is irregular and asymmetric. The data used in this analysis is from the Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES). Repeated TES coverage over the period Ls 185 through Ls 270 acquired much of the cap recession.
During this period of time, TES was taking data in the array normal spin (ANS) mode, scanning across the planet as the satellite made one complete roll every 100 minutes. Therefore, the data was irregularly sampled in both space and time. Also, because of the changes in the spacecraft orbit, the spatial resolution of the data is variable, ranging from 25 to 125 kilometers. We have constructed a map of the south polar region that contains the date when the last CO2 sublimates, hereafter called the crocus date. The crocus date is based on sliding a representative temperature - versus - time curve along the observations for each location in the polar region and selecting the season of maximum temperature change. Recessions in the classic area “ Mountains of Mitchell ” are delayed significantly, disappearing approximately at Ls 260. High resolution (26 km) brightness temperature data at Ls244 confirms that solid CO2 is the dominant cold component. One region (approx. 72-80 S, 180-250 W) within the annual polar cap became dark long before the temperatures begin to rise; in comparison with most areas that showed a gradual increase in brightness until a rapid darkening as the temperature rose well above CO2 frost value. This dark region, here after called the Cryptic region, appears to be a major contributor to the asymmetric polar recession. The cause of the Cryptic region's unexpected behavior is currently under study.
This plot shows the cap edge as a function of season. The data used was 30 µ mpre-mapping TES data. The contour lines are spaced at 10 degrees of Ls, starting with 215 as the dark blue contour. A small region between Ls 275 and Ls 295 has been shaded to indicate that this region has a large error in our estimate of the cap edge. A table below has been provided so that you can easily convert Ls into a Earth calendar date.
CONVERSION TABLE FROM Ls TO EARTH CALENDAR DATE
Ls Last Martian Year> The Martian Year
215 Nov 10th, 1997 Sept 28th, 1999
225 Nov 26th, 1997 Oct 14th, 1999
235 Dec 12th, 1997 Oct 30th, 1999
245 Dec 28th, 1997 Nov 15th, 1999
255 Jan 13th, 1998 Dec 1st, 1999
265 Jan 29th, 1998 Dec 17th, 1999
275 Feb 14th, 1998 Jan 2nd, 2000
This web page is based on a paper presented to the Division of Planetary Sciences in Madison, WI, on August 11th, 1998: TES Observations of the South Pole, BAAS, vol. 30, no. 3, 1049-1050.
Below are other science projects associated with this project.