Los Angeles Coastal Plain Groundwater-flow Model
The Los Angeles Coastal Plain Groundwater-flow Model (LACPGM) is a tool to help water managers better understand groundwater flow and seawater intrusion in the Los Angeles coastal plain basins. It is the culmination of years of data collection and studies in the area and builds on our understanding of the area’s geology and hydrology obtained through the geologic and groundwater flow models.
The Los Angeles Coastal Plain (LACP) covers about 580 square miles and is the largest coastal plain of semiarid southern California. The LACP is heavily developed with mostly residential, commercial, and industrial land uses that rely heavily on groundwater for water supply. In 2010, the LACP was home to about 14 percent of California’s population, or about 5.4 million residents. The LACP is also a major commercial and industrial hub with industries including manufacturing, aerospace, entertainment, and tourism.
There has been a heavy reliance on groundwater from the LACP for many years. An average of 305,000 acre-feet per year (acre-ft/yr) of groundwater was used annually from the LACP from 1971 to 2015. The need to replenish the groundwater basins within the LACP was recognized as far back as the 1930s, when spreading grounds were first used to replenish groundwater basins and store water underground during times of water surplus to meet demands in times of shortage. Seawater intrusion resulting from freshwater pumping was first observed in the 1940s. As a result, injection of imported water through wells at what is now the West Coast Basin Barrier Project began on an experimental basis in 1951. Managed aquifer recharge from the spreading grounds and barrier wells is now a substantial component of the LACP’s groundwater supply. The average annual recharge from water spreading from 1971 to 2015 was about 120,000 acre-ft/yr, and the average annual injection into the barrier wells was about 33,000 acre-ft/yr. Other inflows include areal recharge, underflow from San Gabriel and San Fernando Valleys, and onshore flow from the ocean. The average annual recharge from these sources was 100,000 acre-feet (acre-ft) from 1971 to 2015. Additionally, cross-boundary flow from Orange County into the western Orange County subareas of the LACP was simulated as 48,000 acre-ft from 1971 to 2015.
This study, conducted in cooperation with the Water Replenishment District of Southern California (WRD), involved an assessment of the historical and present status of groundwater resources in the LACP and the development of tools to better understand the groundwater system. These efforts were built upon results from previous studies and incorporate new information and developments in modeling capabilities to provide a more detailed analysis of the aquifer systems.
This study includes a comprehensive compilation of geologic and hydrologic data, development of a chronostratigraphic model that provides a detailed description of the LACP aquifer systems, characterization of the groundwater hydrology of the LACP, including a down-hole analysis of grain size using lithologic and geophysical logs, and development and application of the Los Angeles Coastal Plain Groundwater-flow Model (LACPGM) to simulate past groundwater conditions, estimate groundwater-budget components and flow paths, and approximate future groundwater conditions under different scenarios.
Below are other science projects associated with this project.
Geohydrologic Study of the Central and West Coast Basins of Los Angeles County
Installation of two multiple-well monitoring sites near a proposed supplemental recharge well project, Central Basin, Los Angeles County, Federal Fiscal Year 2016
MODFLOW-6 model to update and extend the Los Angeles Coastal Plain Groundwater Model
Development of a groundwater-simulation model in the Los Angeles Coastal Plain, Los Angeles County, California
The Los Angeles Coastal Plain Groundwater-flow Model (LACPGM) is a tool to help water managers better understand groundwater flow and seawater intrusion in the Los Angeles coastal plain basins. It is the culmination of years of data collection and studies in the area and builds on our understanding of the area’s geology and hydrology obtained through the geologic and groundwater flow models.
The Los Angeles Coastal Plain (LACP) covers about 580 square miles and is the largest coastal plain of semiarid southern California. The LACP is heavily developed with mostly residential, commercial, and industrial land uses that rely heavily on groundwater for water supply. In 2010, the LACP was home to about 14 percent of California’s population, or about 5.4 million residents. The LACP is also a major commercial and industrial hub with industries including manufacturing, aerospace, entertainment, and tourism.
There has been a heavy reliance on groundwater from the LACP for many years. An average of 305,000 acre-feet per year (acre-ft/yr) of groundwater was used annually from the LACP from 1971 to 2015. The need to replenish the groundwater basins within the LACP was recognized as far back as the 1930s, when spreading grounds were first used to replenish groundwater basins and store water underground during times of water surplus to meet demands in times of shortage. Seawater intrusion resulting from freshwater pumping was first observed in the 1940s. As a result, injection of imported water through wells at what is now the West Coast Basin Barrier Project began on an experimental basis in 1951. Managed aquifer recharge from the spreading grounds and barrier wells is now a substantial component of the LACP’s groundwater supply. The average annual recharge from water spreading from 1971 to 2015 was about 120,000 acre-ft/yr, and the average annual injection into the barrier wells was about 33,000 acre-ft/yr. Other inflows include areal recharge, underflow from San Gabriel and San Fernando Valleys, and onshore flow from the ocean. The average annual recharge from these sources was 100,000 acre-feet (acre-ft) from 1971 to 2015. Additionally, cross-boundary flow from Orange County into the western Orange County subareas of the LACP was simulated as 48,000 acre-ft from 1971 to 2015.
This study, conducted in cooperation with the Water Replenishment District of Southern California (WRD), involved an assessment of the historical and present status of groundwater resources in the LACP and the development of tools to better understand the groundwater system. These efforts were built upon results from previous studies and incorporate new information and developments in modeling capabilities to provide a more detailed analysis of the aquifer systems.
This study includes a comprehensive compilation of geologic and hydrologic data, development of a chronostratigraphic model that provides a detailed description of the LACP aquifer systems, characterization of the groundwater hydrology of the LACP, including a down-hole analysis of grain size using lithologic and geophysical logs, and development and application of the Los Angeles Coastal Plain Groundwater-flow Model (LACPGM) to simulate past groundwater conditions, estimate groundwater-budget components and flow paths, and approximate future groundwater conditions under different scenarios.
Below are other science projects associated with this project.