Inventory of debris flows in burned (2020-2022) and unburned (1995-2020) areas in the western Cascade Range of Oregon
September 25, 2024
This data release contains two debris-flow inventories summarizing observations from burned and unburned areas in the western Cascade Range of Oregon (OR). The burned inventory focuses on debris flows that occurred during the first two years after the 2020 Archie Creek, Holiday Farm, Beachie Creek/Lionshead, and Riverside fires (OR_field_observations.csv). The unburned inventory (1995-2022) focuses on debris flows in the same areas (excluding the Riverside Fire). The inventories are derived from field observations (OR_field_observations.csv) and aerial imagery (OR_imagery_observations.csv). They include mapped debris-flow initiation locations, descriptions of the inferred initiation process, other notable site characteristics, and rainfall data. Locations of debris flows observed after wildfires are also linked to USGS postfire debris-flow hazard assessments (USGS, 2022; Staley and others, 2017; Thomas and others 2023). Rainfall characteristics for each debris flow in the inventory are derived from the closest rainfall gage to an observed debris flow (gage_locations.csv). Peak rainfall rates during the known time window of debris-flow initiation are reported for durations of 15 minutes, 30 minutes, 60 minutes, 12 hours, 24 hours, 36 hours, and 48 hours. More detailed explanations of the headers for each of these csv files can be found within the README_csvname.txt file.
References:
Landslide Hazards Program. (n.d.). Emergency assessment of post-fire debris-flow hazards. U.S. Geological Survey. https://landslides.usgs.gov/hazards/postfire_debrisflow
Staley, D. M., Negri, J. A., Kean, J. W., Laber, J. L., Tillery, A. C., and Youberg, A. M., 2017, Prediction of spatially explicit rainfall intensity–duration thresholds for post-fire debris-flow generation in the western United States. Geomorphology, 278, 149–162. https://doi.org/10.1016/j.geomorph.2016.10.019
Thomas, M. A., Kean, J. W., McCoy, S. W., Lindsay, D. N., Kostelnik, J., Cavagnaro, D. B., Rengers, F. K., East, A. E., Schwartz, J. Y., Smith, D. P., and Collins, B. D., 2023, Postfire hydrologic response along the Central California (USA) coast: insights for the emergency assessment of postfire debris-flow hazards. Landslides, 20, 2421-2436. https://doi.org/10.1007/s10346-023-02106-7
References:
Landslide Hazards Program. (n.d.). Emergency assessment of post-fire debris-flow hazards. U.S. Geological Survey. https://landslides.usgs.gov/hazards/postfire_debrisflow
Staley, D. M., Negri, J. A., Kean, J. W., Laber, J. L., Tillery, A. C., and Youberg, A. M., 2017, Prediction of spatially explicit rainfall intensity–duration thresholds for post-fire debris-flow generation in the western United States. Geomorphology, 278, 149–162. https://doi.org/10.1016/j.geomorph.2016.10.019
Thomas, M. A., Kean, J. W., McCoy, S. W., Lindsay, D. N., Kostelnik, J., Cavagnaro, D. B., Rengers, F. K., East, A. E., Schwartz, J. Y., Smith, D. P., and Collins, B. D., 2023, Postfire hydrologic response along the Central California (USA) coast: insights for the emergency assessment of postfire debris-flow hazards. Landslides, 20, 2421-2436. https://doi.org/10.1007/s10346-023-02106-7
Citation Information
Publication Year | 2024 |
---|---|
Title | Inventory of debris flows in burned (2020-2022) and unburned (1995-2020) areas in the western Cascade Range of Oregon |
DOI | 10.5066/P13TPP8J |
Authors | Brittany D. Selander, Nancy Calhoun, William J. Burns, Francis K Rengers, Jason W Kean, Annette I Patton, Joshua J. Roering |
Product Type | Data Release |
Record Source | USGS Asset Identifier Service (AIS) |
USGS Organization | Landslide Hazards Programs |
Rights | This work is marked with CC0 1.0 Universal |