Map of hydrogen prospectivity for the contiguous United States, identifying regions with favorable conditions for hydrogen accumulation, which includes areas with potential hydrogen sources, porous reservoirs, and effective seals to trap the gas.
Why haven’t we found geologic hydrogen before?
A simple explanation is that we haven’t been looking in the right places with the right tools. Historically, subsurface energy drilling was not targeting hydrogen gas and companies often didn’t account for it during exploration. More importantly, geologic settings where hydrogen generation is likely to occur are not the same places where petroleum is found. There are potentially large amounts of geologic hydrogen waiting to be discovered, which could provide a long-term, clean energy source.
Learn More:
Related
How is geologic hydrogen formed?
Why is geologic hydrogen important?
What is geologic hydrogen?
What is associated vs. non-associated natural gas?
What are gas hydrates?
Map of hydrogen prospectivity for the contiguous United States, identifying regions with favorable conditions for hydrogen accumulation, which includes areas with potential hydrogen sources, porous reservoirs, and effective seals to trap the gas.
Schematic cross section showing examples of chemical, mechanical, and thermal geologic energy storage methods in potential underground settings in a sedimentary basin. This illustration is a higher resolution version of figure 2 of USGS Fact Sheet 2022-3084.
Schematic cross section showing examples of chemical, mechanical, and thermal geologic energy storage methods in potential underground settings in a sedimentary basin. This illustration is a higher resolution version of figure 2 of USGS Fact Sheet 2022-3084.
A test-well for collecting gas hydrates in Mallik, Canada. Gas hydrates are naturally-occurring “ice-like” combinations of natural gas and water that have the potential to provide an immense resource of natural gas from the world’s oceans and polar regions.
A test-well for collecting gas hydrates in Mallik, Canada. Gas hydrates are naturally-occurring “ice-like” combinations of natural gas and water that have the potential to provide an immense resource of natural gas from the world’s oceans and polar regions.
Prospectivity mapping for geologic hydrogen
Related
How is geologic hydrogen formed?
Why is geologic hydrogen important?
What is geologic hydrogen?
What is associated vs. non-associated natural gas?
What are gas hydrates?
Map of hydrogen prospectivity for the contiguous United States, identifying regions with favorable conditions for hydrogen accumulation, which includes areas with potential hydrogen sources, porous reservoirs, and effective seals to trap the gas.
Map of hydrogen prospectivity for the contiguous United States, identifying regions with favorable conditions for hydrogen accumulation, which includes areas with potential hydrogen sources, porous reservoirs, and effective seals to trap the gas.
Schematic cross section showing examples of chemical, mechanical, and thermal geologic energy storage methods in potential underground settings in a sedimentary basin. This illustration is a higher resolution version of figure 2 of USGS Fact Sheet 2022-3084.
Schematic cross section showing examples of chemical, mechanical, and thermal geologic energy storage methods in potential underground settings in a sedimentary basin. This illustration is a higher resolution version of figure 2 of USGS Fact Sheet 2022-3084.
A test-well for collecting gas hydrates in Mallik, Canada. Gas hydrates are naturally-occurring “ice-like” combinations of natural gas and water that have the potential to provide an immense resource of natural gas from the world’s oceans and polar regions.
A test-well for collecting gas hydrates in Mallik, Canada. Gas hydrates are naturally-occurring “ice-like” combinations of natural gas and water that have the potential to provide an immense resource of natural gas from the world’s oceans and polar regions.