Base of principal aquifer for parts of the North Platte, South Platte, and Twin Platte Natural Resources Districts, western Nebraska
Water resources in the North and South Platte River valleys of Nebraska, including the valley of Lodgepole Creek, are critical to the social and economic health of the area, and for the recovery of threatened and endangered species in the Platte River Basin. Groundwater and surface water are heavily used resources, and uses are regulated in the study area. Irrigation is the dominant water use and, in most instances, is supplied by both groundwater and surface-water sources. The U.S. Geological Survey and its partners have collaborated to use airborne geophysical surveys for areas of the North and South Platte River valleys including the valley of Lodgepole Creek in western Nebraska. The objective of the surveys was to map the aquifers and underlying bedrock topography of selected areas to help improve the understanding of groundwater–surface-water relations to guide water-management decisions. This project was a cooperative study involving the North Platte Natural Resources District, the South Platte Natural Resources District, the Twin Platte Natural Resources District, the Conservation and Survey Division of the University of Nebraska-Lincoln, and the Nebraska Environmental Trust.
This report presents the interpreted base-of-aquifer surface for part of the area consisting of the North Platte Natural Resources District, the South Platte Natural Resources District, and the Twin Platte Natural Resources District. The interpretations presented herein build on work done by previous researchers from 2008 to 2009 by incorporating additional airborne electromagnetic survey data collected in 2010 and additional test holes from separate, related studies. To make the airborne electromagnetic data useful, numerical inversion was used to convert the measured data into a depth-dependent subsurface resistivity model. An interpretation of the elevation and configuration of the base of aquifer was completed in a geographic information system that provided x, y, and z coordinates. The process of interpretation involved manually picking locations (base-of-aquifer elevations) on the displayed airborne electromagnetic-derived resistivity profile by the project geophysicist, hydrologist, and geologist. These locations, or picks, of the base-of-aquifer elevation (typically the top of the Brule Formation of the White River Group) were then stored in a georeferenced database. The pick was made by comparing the inverted airborne electromagnetic-derived resistivity profile to the lithologic descriptions and borehole geophysical logs from nearby test holes. The database of interpretive picks of the base-of-aquifer elevation was used to create primary input for interpolating the new base-of-aquifer contours.
The automatically generated contours were manually adjusted based on the interpreted location of paleovalleys eroded into the base-of-aquifer surface and associated bedrock highs, many of which were unmapped before this study. When contours are overlain by the water-table surface, the saturated thickness of the aquifer can be computed, which allows an estimate of total water in storage. The contours of the base-of-aquifer surface presented in this report may be used as the lower boundary layer in existing and future groundwater-flow models. The integration of geophysical data into the contouring process facilitated a more continuous and spatially comprehensive view of the hydrogeologic framework.
Citation Information
Publication Year | 2014 |
---|---|
Title | Base of principal aquifer for parts of the North Platte, South Platte, and Twin Platte Natural Resources Districts, western Nebraska |
DOI | 10.3133/sim3310 |
Authors | Christopher M. Hobza, Jared D. Abraham, James C. Cannia, Michaela R. Johnson, Steven S. Sibray |
Publication Type | Report |
Publication Subtype | USGS Numbered Series |
Series Title | Scientific Investigations Map |
Series Number | 3310 |
Index ID | sim3310 |
Record Source | USGS Publications Warehouse |
USGS Organization | Nebraska Water Science Center |