Effects of Historical Coal Mining and Drainage from Abandoned Mines on Streamflow and Water Quality in Newport and Nanticoke Creeks, Luzerne County, Pennsylvania, 1999-2000
This report characterizes the effects of historical mining and abandoned mine drainage (AMD) on streamflow and water quality and evaluates potential strategies for AMD abatement in the 14-square-mile Newport Creek Basin and 7.6-square-mile Nanticoke Creek Basin. Both basins are mostly within the Northern Anthracite Coal Field and drain to the Susquehanna River in central Luzerne County, Pa. The U.S. Geological Survey (USGS), in cooperation with the Earth Conservancy, conducted an assessment from April 1999 to September 2000 that included (1) continuous stage measurement at 7 sites; (2) synoptic water-quality and flow sampling at 21 sites on June 2-4, 1999, and at 24 sites on October 7-8, 1999; and (3) periodic measurement of flow and water quality at 26 additional sites not included in the synoptic sampling effort. Stream water and surface runoff from the unmined uplands drain northward to the valley, where most of the water is intercepted and diverted into abandoned underground mines. Water that infiltrates into the mine workings becomes loaded with acidity, metals, and sulfate and later discharges as AMD at topographically low points along lower reaches of Newport Creek, Nanticoke Creek, and their tributaries. Differences among streamflows in unmined and mined areas of the watersheds indicated that (1) intermediate stream reaches within the mined area but upgradient of AMD sites generally were either dry or losing reaches, (2) ground water flowing to AMD sites could cross beneath surface-drainage divides, and (3) AMD discharging to the lower stream reaches restored volumes lost in the upstream reaches. The synoptic data for June and October 1999, along with continuous stage data during the study period, indicated flows during synoptic surveys were comparable to average values. The headwaters upstream of the mined area generally were oxygenated (dissolved oxygen range was 4.7 to 11.0 mg/L [milligrams per liter]), near-neutral (pH range was 5.8 to 7.6), and net alkaline (net alkalinity range was 2.0 to 25.0 mg/L CaCO3), with relatively low concentrations of sulfate (6.40 to 24.0 mg/L) and dissolved metals (less than 500 ug/L [micrograms per liter] of iron, manganese, and aluminum). In contrast, the AMD discharges and downstream waters were characterized by elevated concentrations of sulfate and dissolved metals that exceeded Federal and State regulatory limits. The largest AMD sources were the Susquehanna Number 7 Mine discharge entering Newport Creek near its mouth (flow range was 4.7 to 19 ft3/s [cubic feet per second]), the Truesdale Mine Discharge (Dundee Outfall) entering Nanticoke Creek about 0.5 mile upstream of Loomis Park (flow range was 0.00 to 38 ft3/s), and a mine-pit overflow entering near the midpoint of Newport Creek (flow range was 4.0 to 6.9 ft3/s). The three large discharges were poorly oxygenated (dissolved oxygen concentration range was
Citation Information
| Publication Year | 2007 |
|---|---|
| Title | Effects of Historical Coal Mining and Drainage from Abandoned Mines on Streamflow and Water Quality in Newport and Nanticoke Creeks, Luzerne County, Pennsylvania, 1999-2000 |
| DOI | 10.3133/sir20075061 |
| Authors | Jeffrey Chaplin, Charles Cravotta, Jeffrey Weitzel, Kenneth Klemow |
| Publication Type | Report |
| Publication Subtype | USGS Numbered Series |
| Series Title | Scientific Investigations Report |
| Series Number | 2007-5061 |
| Index ID | sir20075061 |
| Record Source | USGS Publications Warehouse |
| USGS Organization | Pennsylvania Water Science Center |