Skip to main content
U.S. flag

An official website of the United States government

Volcano Watch — HVO's geological sample collections are an important resource

March 19, 2020

In the past, HVO would occasionally post images of people collecting lava samples on our website. These photos usually featured a person (with little-exposed skin) holding a rock hammer, with a metal bucket nearby. The bucket contained water to "quench" the sample, solidifying the hot lava into a cold glass.

Color photograph of scientist sampling lava
On December 30, 2015, an HVO geologist wore protective gear during collection of a fresh lava sample for chemical analysis from a pāhoehoe breakout along scattered Pu‘u ‘Ō‘ō lava flows. Inset image caption: Metadata is written on a bag that holds a sample taken from pāhoehoe that was collected on August 18, 2006. The front of the bag notes the date and time the sample was collected, sample-collector initials, a description of the sample, and the unique sample identifier; the coordinates of the sample collection location are written on the back of the sample bag. (Credit: USGS. Public domain.)

Natural-fiber or heat-resistant gloves, and sometimes a face mask, protected the sample collector from heat radiating off the 1150-degrees-Celsius (2100-degrees-Fahrenheit) lava. The hammer was used to scoop some of the molten material into the bucket, which would hiss and steam in reaction; more water would be added to cool down the sample so it could be placed in a cloth bag.

HVO carefully archives or curates these precious geological samples collected by current and past HVO geologists, collaborators, visiting scientists, and volunteers. Most of the HVO samples were collected from around the Island of Hawai‘i over the past several decades as part of HVO's mission to monitor eruptive activity (sampling active lava flows) or to characterize previous volcanic activity (sampling prehistoric lava flows on or beneath the surface). For samples collected within Hawai‘i Volcanoes National Park, HVO works closely with National Park Service archivists to ensure appropriate record keeping and tracking.

When a sample is collected, it's important to document the sample's "metadata." This includes the name of the sample collector, coordinates marking sample location, and the collection date. If the sample was taken from molten lava, it's labeled as a "quenched" sample, and the time of sample collection is also noted.

As part of metadata, geologists generally describe the sample location (such as the Southwest Rift Zone of Kīlauea) and characterize the sample itself (a grey-colored, discontinuous, fine ash, for example). Usually, the sample is given a unique identifier (ID), often a combination of numbers and letters, which is written on the sample bag. This ID connects the sample to its metadata, which is entered into a searchable database.

Much preparation and forethought go into sample collection, with prior project planning, permitting, and gaining permission from landowners. For every geologist, it's important to ask: "What question(s) will this sample help me to answer?" Samples are collected sometimes because their specific chemistry or physical characteristics can reveal important information that helps scientists to understand the past, or on-going, or potential future volcanic activity and hazards.

For example, a sample of ash from the Ka‘ū Desert indicates that ash was deposited in that location at some point in the past and could, therefore, be deposited there in the future. Particle size and chemical analyses of the ash can provide information about the eruption magnitude (size) and character (was the eruption driven by steam or magmatic gas?).

Such information improves understanding of the range of behaviors Hawaiian volcanoes exhibited in the past and could exhibit in the future. Likewise, rapid analyses of molten lava samples during the 2018 lower East Rift Zone eruption allowed HVO to detect changes in magma chemistry that foretold a change in eruptive behavior—the arrival of increasingly hot and fluid lava—and associated hazards.

Several sample collections are currently being curated at HVO. The youngest consists of lava and ejecta from Kīlauea's 2018 lower East Rift Zone eruption and summit-collapse events. Other collections include lava samples from historical eruptions of Kīlauea (including products of Pu‘u ‘Ō‘ō and ejecta collected downwind of Halema‘uma‘u when there was an active lava lake); geological samples that aided in creating the Geologic map of the Island of Hawaii; and ash and other ejecta collected as part of research to understand older explosive events in Kīlauea's history. The Pu‘u ‘Ō‘ō collection in particular is perhaps unique in the world for its completeness and longevity covering a single eruptive event and is thus extremely valuable.

Each sample collection and resulting analytical data informs HVO and the wider volcanological community a little more about the behavior and hazards of Hawaiian volcanoes. These collections will continue to be an important resource for researchers, especially because some samples are from areas that are no longer accessible, having been covered by more recent lava flows or within the area of Kīlauea's summit that collapsed in 2018.

Eventually, one of Hawaii's volcanoes will erupt again, and HVO will have another sample collection to curate and care for, and to help us understand Hawaiian volcanoes and their hazards a little more.

Volcano Activity Update

Kīlauea Volcano is not erupting. The USGS Volcano Alert level remains at NORMAL ( Kīlauea updates are issued monthly.

Kīlauea monitoring data over the past month showed no significant changes in seismicity sulfur dioxide emission rates, or deformation. The water lake at the bottom of Halema‘uma‘u continued to slowly expand and deepen. A plot of depth is visible at the bottom of this web page:

Mauna Loa is not erupting. The USGS Volcano Alert level remains at ADVISORY. This alert level does not mean that an eruption is imminent or that progression to an eruption is certain. Mauna Loa updates are issued weekly.

This past week, about 87 small-magnitude earthquakes were recorded beneath the upper elevations of Mauna Loa; the strongest was a M3.9 event on March 19 in the Nīnole Hills area. Monitoring data showed that slow summit inflation continued and fumarole temperature and gas concentrations on the Southwest Rift Zone remain stable.

There were 3 events with 3 or more felt reports in the Hawaiian islands during the past week. A magnitude-1.7 earthquake 3 km (2 mi) WSW of Pāhala at 5 km (3 mi) depth occurred on March 19, 2020 at 06:53 a.m. HST. A magnitude-3.2 earthquake 21 km (13 mi) SW of Leilani Estates at 6 km (4 mi) depth occurred on March 17, 2020 at 06:20 p.m. HST. A magnitude-3.2 earthquake 6 km (4 mi) W of Volcano at -1 km (-1 mi) depth occurred on March 15, 2020 at 09:16 p.m. HST.

For more information on these 3 events, see the links below:

HVO continues to closely monitor both Kīlauea and Mauna Loa.

Get Our News

These items are in the RSS feed format (Really Simple Syndication) based on categories such as topics, locations, and more. You can install and RSS reader browser extension, software, or use a third-party service to receive immediate news updates depending on the feed that you have added. If you click the feed links below, they may look strange because they are simply XML code. An RSS reader can easily read this code and push out a notification to you when something new is posted to our site.