Skip to main content
U.S. flag

An official website of the United States government

20th-century strain accumulation on the Lesser Antilles megathrust based on coral microatolls

January 4, 2022

The seismic potential of the Lesser Antilles megathrust remains poorly known, despite the potential hazard it poses to numerous island populations and its proximity to the Americas. As it has not produced any large earthquakes in the instrumental era, the megathrust is often assumed to be aseismic. However, historical records of great earthquakes in the 19th century and earlier, which were most likely megathrust ruptures, demonstrate that the subduction is not entirely aseismic. Recent occurrences of giant earthquakes in areas where such events were previously thought to be improbable have illustrated the importance of critically evaluating the seismic potential of other “low-hazard” subduction zones, such as the Lesser Antilles.

Using the method of coral microatoll paleogeodesy developed in Sumatra, we examine 20th-century vertical deformation on the forearc islands of the Lesser Antilles and model the underlying strain accumulation on the megathrust. Our data indicate that the eastern coasts of the forearc islands have been subsiding by up to ∼8 mm/yr relative to sites closer to the arc, suggesting that on the time scale of the 20th century, a portion of the megathrust just east of the forearc islands has been locked. Our findings are in contrast to recent models based on satellite geodesy that suggest little or no strain accumulation anywhere along the Lesser Antilles megathrust. This discrepancy is potentially explained by the different time scales of measurement, as recent studies elsewhere have indicated that interseismic coupling patterns may vary on decadal time scales and that century-scale or longer records are required to fully assess seismic potential. The accumulated strain we have detected will likely be released in future megathrust earthquakes, uplifting previously subsiding areas and potentially causing widespread damage from strong ground motion and tsunami waves.