Skip to main content
U.S. flag

An official website of the United States government

A condensed middle Cenomanian succession in the Dakota Sandstone (Upper Cretaceous), Sevilleta National Wildlife Refuge, Socorro County, New Mexico

January 1, 2007

The upper part of the Dakota Sandstone exposed on the Sevilleta National Wildlife Refuge, northern Socorro County, New Mexico, is a condensed, Upper Cretaceous, marine succession spanning the first five middle Cenomanian ammonite zones of the U.S. Western Interior. Farther north in New Mexico these five ammonite zones occur over a stratigraphic interval more than an order of magnitude thicker. The basal part of this marine sequence was deposited in Seboyeta Bay, an elongate east-west embayment into New Mexico that marked the initial transgression of the western shoreline of the Late Cretaceous seaway into New Mexico.

The primary mechanism for condensing this section was nearshore, submarine erosion, although nondeposition played a minor role. The ammonite fossils from each zone are generally fragments of internal molds that are corroded on one side, indicating submarine burial, erosion of the prefossilized steinkern, and corrosion on the sea floor. In addition, the base of the condensed succession is marked by a thin bed that contains abundant, white-weathering, spherical to cylindrical phosphate nodules, many of which contain a cylindrical axial cavity of unknown origin.

The nodules lie on the bedding surface of the highly burrowed, ridge-forming sandstone near the top of the Dakota and occur in the overlying breccia. The breccia consists of rip-up clasts of sandstone and eroded internal molds of the ammonite Conlinoceras tarrantense, the zonal index for the basal middle Cenomanian. The nodules below the breccia imply a time of erosion followed by nondeposition or sediment bypass during which the phosphatization occurred. The breccia implies a time of submarine erosion, probably storm-related.

Remarkably, this condensed succession and the basal part of the overlying Mancos Shale tongue contain one of the most complete middle Cenomanian ammonite sequences in the U.S. Western Interior. Five of the six ammonite zones that characterize the middle Cenomanian of the Western Interior are found on Sevilleta National Wildlife Refuge. Only representatives of the second oldest zone are missing, although stratigraphically there is room for this zone. Fossils from each zone occur in stratigraphically separated beds; no zone overlaps with or is superimposed on another.

Maps of the western shoreline of the seaway at the beginning and end of the time represented by the condensed succession show the progression of the Late Cretaceous seaway from embayment to ocean covering most of New Mexico. These maps, combined with the resolving power of the middle Cenomanian biostratigraphic framework, indicate that the southern shoreline of Seboyeta Bay, which was only a few miles south of Sevilleta National Wildlife Refuge, was virtually stationary for most of this time. This ensured that the refuge was under shallow, well-oxygenated, marine waters for much of middle Cenomanian time. It also ensured that deposited sediments would be subjected periodically to erosion by nearshore waves and currents.

This report marks the first recorded occurrence in New Mexico of the following ammonite species: Acanthoceras muldoonense (zonal index), A. bellense (zonal index), Turrilites (Euturrilites) scheuchzerianus, Cunningtoniceras cf. C. cunningtoni, and Paraconlinoceras leonense. The occurrences of the zonal indices in the Dakota Sandstone on and to the south of the refuge increase not only their geographic distributions, but also the biostratigraphic resolution in the middle Cenomanian of New Mexico.

Publication Year 2007
Title A condensed middle Cenomanian succession in the Dakota Sandstone (Upper Cretaceous), Sevilleta National Wildlife Refuge, Socorro County, New Mexico
Authors Stephen C. Hook, William A. Cobban
Publication Type Article
Publication Subtype Journal Article
Series Title New Mexico Geology
Index ID 70031052
Record Source USGS Publications Warehouse
USGS Organization Core Research Center
Was this page helpful?