Skip to main content
U.S. flag

An official website of the United States government

Alteration in the Madera Limestone and Sandia Formation from core hole VC-1, Valles caldera, New Mexico

January 1, 1988

Core hole VC-1 penetrated the southwestern ring fracture zone of the 1.1 Ma Valles caldera and at a depth of 333 m intersected the top of the Paleozoic section including the Abo Formation, Madera Limestone, and Sandia Formation, reaching a total depth of 856 m. The Paleozoic rocks, which consist of thin-bedded limestone, siltstone, mudstone, sandstone, and local conglomerate, are overlain by volcanic rocks of the caldera moat that are less than 0.6 Ma. Diagenetic and at least three hydrothermal alteration stages were identified in the Madera Limestone and Sandia Formation. Diagenetic clay alteration was pervasive throughout the sedimentary rocks. Volcanic activity at 16.5 Ma and continuing through the formation of the Valles caldera resulted in high thermal gradients, which caused recrystallization of diagenetic clay minerals. Interstratified smectite-illite is the most diagnostic clay mineral throughout the section; structurally, the illite component in the ordered interstratified illite-smectite changes gradationally from 70% at the top of the Madera Limestone to 95% at the base of the section in the Sandia Formation. Pyrite that occurs as small clots and lenses as well as finely disseminated is interpreted as being of diagenetic origin, especially in organic-rich beds. Low permeability of much of the paleozoic section precluded the deposition of hydrothermal minerals except in fractures and intergranular space in some of the more permeable sandstone and brecciated horizons. Three stages of hydrothermal mineral deposition are defined. -from Author

Publication Year 1988
Title Alteration in the Madera Limestone and Sandia Formation from core hole VC-1, Valles caldera, New Mexico
Authors T. E. C. Keith
Publication Type Article
Publication Subtype Journal Article
Series Title Journal of Geophysical Research
Index ID 70013242
Record Source USGS Publications Warehouse