Introduction
Metal-mining related wastes in the Boulder River basin study area in northern Jefferson County, Montana, have been implicated in their detrimental effects on water quality with regard to acid generation and toxic-metal solubilization during snow melt and storm water runoff events. This degradation of water quality is defined chiefly by the “Class 1 Aquatic Life Standards” that give limits for certain dissolved metal concentrations according to water alkalinity.
Veins enriched in base- and precious metals were explored and mined in the Basin, Cataract Creek, and High Ore Creek drainages over a period of more than 70 years. Extracted minerals included galena, sphalerite, pyrite, chalcopyrite, tetrahedrite and arsenopyrite. Most of the metal-mining wastes in the study area were identified and described by the Montana Bureau of Mines and Geology. In 1997, the U.S. Geological Survey collected 20 composite samples of mine-dump or tailings waste from ten sites in the Basin and Cataract Creek drainages, and two samples from one site in the High Ore Creek drainage. Desborough and Fey presented data concerning acid generation potential, mineralogy, concentrations of certain metals by energy-dispersive X-ray fluorescence (EDXRF), and trace-element leachability of mine and exploration wastes from the ten sites of the Basin and Cataract Creek drainages. The present report presents total-digestion major- and trace-element analyses, net acid production (NAP), and results from the EPA-1312 synthetic precipitation leach procedure (SPLP) performed on the same composite samples from the ten sites from the Basin and Cataract Creek drainages, and two composite samples from the site in the High Ore Creek drainage.