Skip to main content
U.S. flag

An official website of the United States government

Anthropogenic constituents in shallow ground water in the Upper Illinois River Basin

May 1, 2003

The potential for anthropogenic effects on ground water is becoming of increasing concern as land throughout the Nation becomes more urbanized. The possible contamination of water resources by volatile organic compounds (VOCs), pesticides (including transformation products), and nitrate, from current urban land use and past agricultural land use, is of particular concern. As part of the U.S. Geological Survey's National Water-Quality Assessment program, water samples for analysis of VOCs, pesticides, and nitrate were collected from 43 wells in shallow (175 feet deep or less) ground water in glacial deposits overlying a major bedrock aquifer in recently urbanized areas in the Chicago, Ill. and Milwaukee, Wis. metropolitan counties.Constituents were reported using two reporting levels. For the laboratory reporting level, the risk of a false positive or false negative detection is less than or equal to 1 percent. For
the information-rich method level, estimated concentrations are identified positively and are qualified to be present on the basis of quality-control criteria, but have a higher risk of false positive detections.VOCs were detected in 32 percent
(12 of 38) of the well samples with 15 detections of 7 VOCs, based on laboratory reporting levels. Concentrations ranged from 0.03 (estimated) to 4.6 micrograms per liter (?g/L), with a median concentration of 0.13 ?g/L. Methyl tert-butyl ether (MTBE) and trichloromethane (chloroform) were the most common with detections in 10 percent (4 of 38) of the well samples. Using information-rich method reporting levels, VOCs were detected in 74 percent of the wells with 37 detections of 15 VOCs. Chloroform was most common with detections in 24 percent (9 of 38) of the well samples.Pesticides were detected in 62 percent (26 of 42) of the well samples with 83 detections of 20 pesticides, based on laboratory reporting levels for the respective constituent. Concentrations ranged from 0.003 (estimated) to 3.6 (estimated) ?g/L, with a median concentration of 0.06 ?g/L. Deethylatrazine was most common with detections in 43 percent (18 of 42) of the well samples. Using information-rich method reporting levels, pesticides were detected in 74 percent (31 of 42) of the well samples with 134 detections of 29 pesticides. Deethylatrazine was most common with detections in 45 percent (19 of 42) of the well samples.Nitrate concentrations ranged from less than 0.047 to 12.5 milligrams per liter (mg/L) with a median concentration of 0.068 mg/L. Nitrate concentrations were greater than 2 mg/L in 30 percent (13 of 43) of the wells sampled. Total VOC detections did not correlate well (less than Spearman Rank correlation value of plus or minus 0.10) with well depth, age, or dissolved oxygen. Total pesticide detections did correlate with dissolved oxygen and negatively correlated with well depth. Nitrate concentrations correlated with dissolved oxygen and apparent recharge date.No VOC or pesticide concentrations exceeded U.S. Environmental Protection Agency drinking-water standards and only one nitrate
2 Anthropogenic Constituents in Shallow Ground Water in the Upper Illinois River Basin
detection exceeded the standards. However, of the 43 wells sampled for VOCs or pesticides using information-rich methods, or nitrate at laboratory reporting levels, 40 of 43 (93 percent) well samples had at least one detection of a VOC or pesticide, or a detection of nitrate above 2.0 mg/L. This result indicates that most of these wells are anthropogenically affected, but presently not at U.S. Environmental Protection Agency drinking-water regulation levels of concern. The wells sampled were not public drinking-water supplies; therefore, these wells were not subject to U.S. Environmental Protection Agency drinking-water regulations.

Publication Year 2003
Title Anthropogenic constituents in shallow ground water in the Upper Illinois River Basin
DOI 10.3133/wri024293
Authors William S. Morrow
Publication Type Report
Publication Subtype USGS Numbered Series
Series Title Water-Resources Investigations Report
Series Number 2002-4293
Index ID wri024293
Record Source USGS Publications Warehouse