Skip to main content
U.S. flag

An official website of the United States government

Application of the Precipitation-Runoff Modeling System (PRMS) to simulate near-native streamflow in the Upper Rio Grande Basin

June 1, 2020

The U.S. Geological Survey’s Precipitation-Runoff Modeling System (PRMS) is widely used to simulate the effects of climate, topography, land cover, and soils on landscape-level hydrologic response and streamflow. This study developed, calibrated, and assessed a PRMS model that simulates near-native or naturalized streamflow conditions in the Upper Rio Grande Basin. A PRMS model framework of 1,021 hydrologic response units was constructed for the basin. Subbasins within the larger Upper Rio Grande Basin range from snow-dominated northern basins to monsoon driven southern basins. The 1,021 hydrologic response units were grouped into 133 subareas within the basin, and solar radiation and potential evapotranspiration data were used to calibrate corresponding PRMS parameters in each subarea independently. Nine subbasins with streamgages distributed across the basin were identified as “near-native” subbasins, or those basins with low anthropogenic disturbance. Model parameters that affect streamflow were calibrated for the near-native subbasins, and the calibrated parameters were distributed to the remaining hydrologic response units on the basis of terrain, soil, and vegetation conditions linked to a distribution and weighting algorithm developed for this study. The parameter distribution method was validated in three of the nine near-native subbasins. Calibration results demonstrated that the PRMS model developed in this study with distributed model parameters for the entire Upper Rio Grande Basin was successful in applying local information to improve model performance over the National Hydrologic Model, and that the new model is appropriate to use to simulate near-native conditions throughout the basin. The result is a model that can simulate naturalized flow and other variables that affect the water budget (including soil moisture, evapotranspiration, recharge) at the daily time step for current and future climate conditions, and that can also be used in conjunction with other models developed for the basin.