Skip to main content
U.S. flag

An official website of the United States government

Assessment and management of dead-wood habitat

July 31, 2007

The Bureau of Land Management (BLM) is in the process of revising its resource management plans for six districts in western and southern Oregon as the result of the settlement of a lawsuit brought by the American Forest Resource Council. A range of management alternatives is being considered and evaluated including at least one that will minimize reserves on O&C lands. In order to develop the bases for evaluating management alternatives, the agency needs to derive a reasonable range of objectives for key issues and resources. Dead-wood habitat for wildlife has been identified as a key resource for which decision-making tools and techniques need to be refined and clarified. Under the Northwest Forest Plan, reserves were to play an important role in providing habitat for species associated with dead wood (U.S. Department of Agriculture Forest Service and U.S. Department of the Interior Bureau of Land Management, 1994). Thus, the BLM needs to: 1) address the question of how dead wood will be provided if reserves are not included as a management strategy in the revised Resource Management Plan, and 2) be able to evaluate the effects of alternative land management approaches.

Dead wood has become an increasingly important conservation issue in managed forests, as awareness of its function in providing wildlife habitat and in basic ecological processes has dramatically increased over the last several decades (Laudenslayer et al., 2002). A major concern of forest managers is providing dead wood habitat for terrestrial wildlife. Wildlife in Pacific Northwest forests have evolved with disturbances that create large amounts of dead wood; so, it is not surprising that many species are closely associated with standing (snags) or down, dead wood. In general, the occurrence or abundance of one-quarter to one-third of forest-dwelling vertebrate wildlife species, is strongly associated with availability of suitable dead-wood habitat (Bunnell et al., 1999; Rose et al., 2001). In Oregon and Washington, approximately 150 species of wildlife are reported to use dead wood in forests (O’Neil et al., 2001). Forty-seven sensitive and special-status species are associated with dead wood (Appendix A). These are key species for management consideration because concern over small or declining populations is often related to loss of suitable dead-wood habitat (Marshall et al., 1996). Primary excavators (woodpeckers) also are often the focus of dead-wood management, because they perform keystone functions in forest ecosystems by creating cavities for secondary cavity-nesters (Martin and Eadie, 1999; Aubry and Raley, 2002). A diverse guild of secondary cavity-users (including swallows, bluebirds, several species of ducks and owls, ash-throated flycatcher, flying squirrel, bats, and many other species) is unable to excavate dead wood, and therefore relies on cavities created by woodpeckers for nesting sites. Suitable nest cavities are essential for reproduction, and their availability limits population size (Newton, 1994). Thus, populations of secondary cavity-nesters are tightly linked to the habitat requirements of primary excavators.

Although managers often focus on decaying wood as habitat for wildlife, the integral role dead wood plays in ecological processes is an equally important consideration for management. Rose et al. (2001) provide a thorough review of the ecological functions of dead wood in Pacific Northwest forests, briefly summarized here. Decaying wood functions in: soil development and productivity, nutrient cycling, nitrogen fixation, and carbon storage. From ridge tops, to headwater streams, to estuaries and coastal marine ecosystems, decaying wood is fundamental to diverse terrestrial and aquatic food webs. Wildlife species that use dead wood for cover or feeding are linked to these ecosystem processes through a broad array of functional roles, including facilitation of decay and trophic interactions with other organisms (Marcot, 2002; Marcot, 2003). For example, by puncturing bark and fragmenting sapwood, woodpeckers create sites favorable for wood-decaying organisms (Farris et al., 2004), which in turn create habitat for other species and facilitate nutrient cycling. Small mammals that use down wood for cover function in the dispersal of plant seeds and fungal spores (Carey et al., 1999). Resident cavitynesting birds may regulate insect populations by preying on overwintering arthropods (Jackson, 1979; Kroll and Fleet, 1979). These examples illustrate how dead wood not only directly provides habitat for a large number of wildlife species, but also forms the foundation of functional webs that critically influence forest ecosystems (Marcot, 2002; Marcot, 2003). The important and far-reaching implications of management of decaying wood highlight the need for conservation of dead-wood resources in managed forests. Consideration of the key ecological functions of species associated with dead wood can help guide management of dead wood in a framework consistent with the paradigm of ecosystem management (Marcot and Vander Heyden, 2001; Marcot, 2002.)

As more information is revealed about the ecological and habitat values of decaying wood, concern has increased over a reduction in the current amounts of dead wood relative to historic levels (Ohmann and Waddell, 2002). Past management practices have tended to severely reduce amounts of dead wood throughout all stages of forest development (Hansen et al., 1991). The large amounts of legacy wood that characterize young post-disturbance forests are not realized in managed stands, because most of the wood volume is removed at harvest for economic and safety reasons. Mid-rotation thinning is used to “salvage” some mortality that might otherwise occur due to suppression, so fewer snags are recruited in mid-seral stages. Harvest rotations of 80 years or less truncate tree size in managed stands, and thus limit the production of large-diameter wood. As a consequence of these practices, dead wood has been reduced by as much as 90% after two rotations of managed Douglas-fir (Rose et al., 2001). Large legacy deadwood is becoming a scarce, critical habitat that will take decades to centuries to replace. Furthermore, management continues to have important direct and indirect effects on the amount and distribution of dead wood in forests. Current guidelines for managing dead wood may be inadequate to maintain habitat for all associated species because they largely focus on a single use of dead wood (nesting habitat) by a small suite of species (cavity-nesting birds), and may under represent the sizes and amounts of dead wood used by many wildlife species (Rose et al., 2001, Wilhere, 2003). 

Publication Year 2007
Title Assessment and management of dead-wood habitat
DOI 10.3133/ofr20071054
Authors Joan Hagar
Publication Type Report
Publication Subtype USGS Numbered Series
Series Title Open-File Report
Series Number 2007-1054
Index ID ofr20071054
Record Source USGS Publications Warehouse
USGS Organization Forest and Rangeland Ecosystem Science Center