Skip to main content
U.S. flag

An official website of the United States government

Assessment of floodplain vulnerability during extreme Mississippi River flood 2011

March 1, 2014

Regional change in the variability and magnitude of flooding could be a major consequence of future global climate change. Extreme floods have the capacity to rapidly transform landscapes and expose landscape vulnerabilities through highly variable spatial patterns of inundation, erosion, and deposition. We use the historic activation of the Birds Point-New Madrid Floodway during the Mississippi and Ohio River Flooding of 2011 as a scientifically unique stress experiment to analyze indicators of floodplain vulnerability. We use pre- and postflood airborne Light Detection and Ranging data sets to locate erosional and depositional hotspots over the 540 km2 agricultural Floodway. While riparian vegetation between the river and the main levee breach likely prevented widespread deposition, localized scour and deposition occurred near the levee breaches. Eroded gullies nearly 1 km in length were observed at a low ridge of a relict meander scar of the Mississippi River. Our flow modeling and spatial mapping analysis attributes this vulnerability to a combination of erodible soils, flow acceleration associated with legacy fluvial landforms, and a lack of woody vegetation to anchor soil and enhance flow resistance. Results from this study could guide future mitigation and adaptation measures in cases of extreme flooding.

Publication Year 2014
Title Assessment of floodplain vulnerability during extreme Mississippi River flood 2011
DOI 10.1021/es404760t
Authors Allison E. Goodwell, Zhenduo Zhu, Debsunder Dutta, Jonathan A. Greenberg, Praveen Kumar, Marcelo H. Garcia, Bruce L. Rhoads, Robert R. Holmes, Gary Parker, David P. Berretta, Robert B. Jacobson
Publication Type Article
Publication Subtype Journal Article
Series Title Environmental Science & Technology
Index ID 70098977
Record Source USGS Publications Warehouse
USGS Organization Office of Surface Water