Biological and geochemical controls on diel dissolved inorganic carbon cycling in a low-order agricultural stream: Implications for reach scales and beyond
Movement of dissolved inorganic carbon (DIC) through the hydrologic cycle is an important component of global carbon budgets, but there is considerable uncertainty about the controls of DIC transmission from landscapes to streams, and through river networks to the oceans. In this study, diel measurements of DIC, d13C-DIC, dissolved oxygen (O2), d18O-O2, alkalinity, pH, and other parameters were used to assess the relative magnitudes of biological and geochemical controls on DIC cycling and flux in a nutrient-rich, net autotrophic stream. Rates of photosynthesis (P), respiration (R), groundwater discharge, air–water exchange of CO2, and carbonate precipitation/dissolution were quantified through a time-stepping chemical/isotope (12C and 13C, 16O and 18O) mass balance model. Groundwater was the major source of DIC to the stream. Primary production and carbonate precipitation were equally important sinks for DIC removed from the water column. The stream was always super-saturated with respect to carbonate minerals, but carbonate precipitation occurred mainly during the day when P increased pH. We estimated more than half (possibly 90%) of the carbonate precipitated during the day was retained in the reach under steady baseflow conditions. The amount of DIC removed from the overlying water through carbonate precipitation was similar to the amount of DIC generated from R. Air–water exchange of CO2 was always from the stream to the atmosphere, but was the smallest component of the DIC budget. Overall, the in-stream DIC reactions reduced the amount of CO2 evasion and the downstream flux of groundwater-derived DIC by about half relative to a hypothetical scenario with groundwater discharge only. Other streams with similar characteristics are widely distributed in the major river basins of North America. Data from USGS water quality monitoring networks from the 1960s to the 1990s indicated that 40% of 652 stream monitoring stations in the contiguous USA were at or above the equilibrium saturation state for calcite, and 77% of all stations exhibited apparent increases in saturation state from the 1960/70s to the 1980/90s. Diel processes including partially irreversible carbonate precipitation may affect net carbon fluxes from many such watersheds.
Citation Information
Publication Year | 2011 |
---|---|
Title | Biological and geochemical controls on diel dissolved inorganic carbon cycling in a low-order agricultural stream: Implications for reach scales and beyond |
DOI | 10.1016/j.chemgeo.2010.12.012 |
Authors | Craig Tobias, J.K. Böhlke |
Publication Type | Article |
Publication Subtype | Journal Article |
Series Title | Chemical Geology |
Index ID | 70042392 |
Record Source | USGS Publications Warehouse |
USGS Organization | Branch of Regional Research-Eastern Region; Toxic Substances Hydrology Program |