Skip to main content
U.S. flag

An official website of the United States government

Cautions and suggestions for geochemical sampling in fractured rock

February 22, 2002

Collecting water samples for geochemical analyses in open bedrock boreholes or in discrete intervals of boreholes intersected by multiple fractures is likely to yield ambiguous results for ground water chemistry because of the variability in the transmissivity, storativity, and hydraulic head of fractures intersecting the borehole. Interpreting chemical analyses of water samples collected in bedrock boreholes requires an understanding of the hydraulic conditions in the borehole under the ambient flow regime in the aquifer as well as during sampling. Pumping in open boreholes, regardless of the pumping rate and the location of the pump intake, first draws water from the borehole and then from fractures intersecting the borehole. The time at which the volumetric rate of water entering the borehole from fractures is approximately equal to the pumping rate can be identified by monitoring the logarithm of drawdown in the borehole as a function of the logarithm of time. Mixing of water entering the borehole from fractures with water in the borehole must be considered in estimating the time at which the pump discharge is representative of aquifer water. In boreholes intersected by multiple fractures, after the contribution from the borehole volume has diminished, the contribution of fractures to the pump discharge will be weighted according to their transmissivity, regardless of the location of the pump intake. This results in a flux‐averaged concentration in the pump discharge that is biased by the chemical signature of those fractures with the highest transmissivity. Under conditions where the hydraulic head of fractures varies over the length of the borehole, open boreholes will be subject to ambient flow in the water column in the borehole. In some instances, the magnitude of the ambient flow may be similar to the designated pumping rate for collecting water samples for geochemical analyses. Under such conditions, the contributions to the pump discharge from individual fractures will be a function not only of the transmissivity of the fractures, but also of the distribution of hydraulic head in fractures intersecting the borehole. To reduce or eliminate the deleterious effects of conducting geochemical sampling in open boreholes, a straddle‐packer apparatus that isolates a single fracture or a series of closely spaced fractures is recommended. It is also recommended that open boreholes be permanently outfitted with borehole packers or borehole liners in instances where maintaining the hydraulic and chemical stratification in the aquifer is of importance. In a field example, a comparison of results from sampling in an open borehole and in discrete intervals of the same borehole showed dramatic differences in the concentrations of chemical constituents in the water samples, even though chemical field parameters stabilized prior to both open borehole and discrete interval sampling.

Publication Year 2002
Title Cautions and suggestions for geochemical sampling in fractured rock
DOI 10.1111/j.1745-6592.2002.tb00764.x
Authors Allen M. Shapiro
Publication Type Article
Publication Subtype Journal Article
Series Title Groundwater Monitoring & Remediation
Index ID 70211216
Record Source USGS Publications Warehouse
USGS Organization WMA - Earth System Processes Division
Was this page helpful?