Skip to main content
U.S. flag

An official website of the United States government

Deformation during terrane accretion in the Saint Elias orogen, Alaska

January 1, 2004

The Saint Elias orogen of southern Alaska and adjacent Canada is a complex belt of mountains formed by collision and accretion of the Yakutat terrane into the transition zone from transform faulting to subduction in the northeast Pacific. The orogen is an active analog for tectonic processes that formed much of the North American Cordillera, and is also an important site to study (1) the relationships between climate and tectonics, and (2) structures that generate large- to great-magnitude earthquakes. The Yakutat terrane is a fragment of the North American plate margin that is partly subducted beneath and partly accreted to the continental margin of southern Alaska. Interaction between the Yakutat terrane and the North American and Pacific plates causes significant differences in the style of deformation within the terrane. Deformation in the eastern part of the terrane is caused by strike-slip faulting along the Fairweather transform fault and by reverse faulting beneath the coastal mountains, but there is little deformation immediately offshore. The central part of the orogen is marked by thrusting of the Yakutat terrane beneath the North American plate along the Chugach-Saint Elias fault and development of a wide, thin-skinned fold-and-thrust belt. Strike-slip faulting in this segment may he localized in the hanging wall of the Chugach-Saint Elias fault, or dissipated by thrust faulting beneath a north-northeast-trending belt of active deformation that cuts obliquely across the eastern end of the fold-and-thrust belt. Superimposed folds with complex shapes and plunging hinge lines accommodate horizontal shortening and extension in the western part of the orogen, where the sedimentary cover of the Yakutat terrane is accreted into the upper plate of the Aleutian subduction zone. These three structural segments are separated by transverse tectonic boundaries that cut across the Yakutat terrane and also coincide with the courses of piedmont glaciers that flow from the topographic backbone of the Saint Elias Mountains onto the coastal plain. The Malaspina fault-Pamplona structural zone separates the eastern and central parts of the orogen and is marked by reverse faulting and folding. Onshore, most of this boundary is buried beneath the western or "Agassiz" lobe of the Malaspina piedmont glacier. The boundary between the central fold-and-thrust belt and western zone of superimposed folding lies beneath the middle and lower course of the Bering piedmont glacier. 

Publication Year 2004
Title Deformation during terrane accretion in the Saint Elias orogen, Alaska
DOI 10.1130/B25182.1
Authors R.L. Bruhn, T.L. Pavlis, G. Plafker, L. Serpa
Publication Type Article
Publication Subtype Journal Article
Series Title Geological Society of America Bulletin
Index ID 70027051
Record Source USGS Publications Warehouse