Skip to main content
U.S. flag

An official website of the United States government

Description and field analysis of a coupled ground-water/surface-water flow model (MODFLOW/BRANCH) with modifications for structures and wetlands in southern Dade County, Florida

January 1, 1996

A coupled surface-water model (BRANCH) and ground-water model (MODFLOW) model were tested to simulate the interacting wetlands/surface-water/ ground-water system of southern Dade County. Several options created for the MODFLOW ground- ground-water model were used in representing this field situation. The primary option is the MODBRANCH interfacing software, which allows leakage to be accounted for between the MODFLOW ground-water model and the BRANCH dynamic model for simulation of flow in an interconnected network of open channels. A modification to an existing software routine, which is referred to as BCF2, allows cells in MODFLOW to rewet when dry--a requirement in representing the seasonal wetlands in Dade County. A companion to BCF2 is the modified evapotranspiration routine EVT2. The EVT2 routine changes the cells where evapotranspiration occurs, depending on which cells are wet. The Streamlink package represents direct connections between the canals and wetlands at locations where canals open directly into overland flow. Within the BRANCH model, the capability to represent the numerous hydraulic structures, gated spillways, gated culverts, and pumps was added. The application of these modifications to model surface-water/ground-water interactions in southern Dade County demonstrated the usefulness of the coupled MODFLOW/BRANCH model. Ground-water and surface-water flows are both simulated with dynamic models. Flow exchange between models, intermittent wetting and drying, evapotranspiration, and hydraulic structure operations are all represented appropriately. Comparison was made with a simulation using the RIV1 package instead of MODBRANCH to represent the canals. RIV1 represents the canals by user-defined stages, and computes leakage to the aquifer. Greater accuracy in reproducing measured ground- water heads was achieved with MODBRANCH, which also computes dynamic flow conditions in the canals, unlike RIV1. The surface-water integrated flow and transport two-dimensional model (SWIFT2D) was also applied to the southeastern coastal wetlands for comparison with the wetlands flow approximation made in MODFLOW. MODFLOW simulates the wetlands as a highly conductive upper layer of the aquifer, whereas SWIFT2D solves the hydrodynamic equations. Comparison in this limited test demonstrated no specific advantage for either method of representation. However, much additional testing on a wider variety of geometric and hydraulic situations, such as in areas with greater tidal or other dynamic forcing effects, is needed to make definite conclusions. A submodel of the existing southern Dade County model schematization was used to examine water-delivery alternatives proposed by the U.S. Army Corps of Engineers. For this application, the coupled MODFLOW/BRANCH model was used as a design tool. A new canal and several pumps to be tested to maintain lower water levels in a residential area (while water levels in the Everglades are raised) were added to the model schematization. The pumps were assumed to have infinite supply capacity in the model so that their maximum pumping rates during the simulation could be used to determine pump sizes.

Publication Year 1996
Title Description and field analysis of a coupled ground-water/surface-water flow model (MODFLOW/BRANCH) with modifications for structures and wetlands in southern Dade County, Florida
DOI 10.3133/wri964118
Authors E.D. Swain, Barbara Howie, Joann Dixon
Publication Type Report
Publication Subtype USGS Numbered Series
Series Title Water-Resources Investigations Report
Series Number 96-4118
Index ID wri964118
Record Source USGS Publications Warehouse