Development of a precipitation-runoff model to simulate unregulated streamflow in the South Fork Flathead River Basin, Montana
This report documents the development of a precipitation-runoff model for the South Fork Flathead River Basin, Mont. The Precipitation-Runoff Modeling System model, developed in cooperation with the Bureau of Reclamation, can be used to simulate daily mean unregulated streamflow upstream and downstream from Hungry Horse Reservoir for water-resources planning. Two input files are required to run the model. The time-series data file contains daily precipitation data and daily minimum and maximum air-temperature data from climate stations in and near the South Fork Flathead River Basin. The parameter file contains values of parameters that describe the basin topography, the flow network, the distribution of the precipitation and temperature data, and the hydrologic characteristics of the basin soils and vegetation.
A primary-parameter file was created for simulating streamflow during the study period (water years 1967-2005). The model was calibrated for water years 1991-2005 using the primary-parameter file. This calibration was further refined using snow-covered area data for water years 2001-05. The model then was tested for water years 1967-90. Calibration targets included mean monthly and daily mean unregulated streamflow upstream from Hungry Horse Reservoir, mean monthly unregulated streamflow downstream from Hungry Horse Reservoir, basin mean monthly solar radiation and potential evapotranspiration, and daily snapshots of basin snow-covered area.
Simulated streamflow generally was in better agreement with observed streamflow at the upstream gage than at the downstream gage. Upstream from the reservoir, simulated mean annual streamflow was within 0.0 percent of observed mean annual streamflow for the calibration period and was about 2 percent higher than observed mean annual streamflow for the test period. Simulated mean April-July streamflow upstream from the reservoir was about 1 percent lower than observed streamflow for the calibration period and about 4 percent higher than observed for the test period. Downstream from the reservoir, simulated mean annual streamflow was 17 percent lower than observed streamflow for the calibration period and 12 percent lower than observed streamflow for the test period. Simulated mean April-July streamflow downstream from the reservoir was 13 percent lower than observed streamflow for the calibration period and 6 percent lower than observed streamflow for the test period.
Calibrating to solar radiation, potential evapotranspiration, and snow-covered area improved the model representation of evapotranspiration, snow accumulation, and snowmelt processes. Simulated basin mean monthly solar radiation values for both the calibration and test periods were within 9 percent of observed values except during the month of December (28 percent different). Simulated basin potential evapotranspiration values for both the calibration and test periods were within 10 percent of observed values except during the months of January (100 percent different) and February (13 percent different). The larger percent errors in simulated potential evaporation occurred in the winter months when observed potential evapotranspiration values were very small; in January the observed value was 0.000 inches and in February the observed value was 0.009 inches. Simulated start of melting of the snowpack occurred at about the same time as observed start of melting. The simulated snowpack accumulated to 90-100 percent snow-covered area 1 to 3 months earlier than observed snowpack. This overestimated snowpack during the winter corresponded to underestimated streamflow during the same period.
In addition to the primary-parameter file, four other parameter files were created: for a "recent" period (1991-2005), a historical period (1967-90), a "wet" period (1989-97), and a "dry" period (1998-2005). For each data file of projected precipitation and air temperature, a single parameter file can be used to simulate a s
Citation Information
Publication Year | 2011 |
---|---|
Title | Development of a precipitation-runoff model to simulate unregulated streamflow in the South Fork Flathead River Basin, Montana |
DOI | 10.3133/sir20115095 |
Authors | K.J. Chase |
Publication Type | Report |
Publication Subtype | USGS Numbered Series |
Series Title | Scientific Investigations Report |
Series Number | 2011-5095 |
Index ID | sir20115095 |
Record Source | USGS Publications Warehouse |
USGS Organization | Montana Water Science Center |