Skip to main content
U.S. flag

An official website of the United States government

Deviations from sorption linearity on soils of polar and nonpolar organic compounds at low relative concentrations

January 1, 1998

A series of single-solute and binary-solute sorption data have been obtained on representative samples of polar compounds (substituted ureas and phenolic compounds) and of nonpolar compounds (e.g., EDB and TCE) on a peat soil and a mineral (Woodburn) soil; the data extend to low relative solute concentrations (C(e)/S(w)). At relatively low C(e)/S(w), both the nonpolar and the polar solutes exhibit nonlinear sorption. The sorption nonlinearity approaches apparent saturation at about C(e)/S(w) = 0.010-0.015 for the nonpolar solutes and at about C(e)/S(w) = 0.10-0.13 for the polar solutes; above these C(e)/S(w) regions, the isotherms are practically linear. The nonlinear sorption capacities are greater for polar solutes than for nonpolar solutes and the peat soil shows a greater effect than the Woodburn soil. The small nonlinear sorption capacity for a nonpolar solute is suppressed indiscriminately by either a nonpolar or a polar cosolute at relatively low C(e)/S(w) of the cosolute. By contrast, the abilities of different cosolutes to suppress the nonlinear capacity of a nominal polar solute differ drastically. For polar solutes, a nonpolar cosolute exhibits a limited suppression even at high cosolute C(e)/S(w); effective suppression occurs when the cosolute is relatively polar and at various C(e)/S(w). These differences suggest that more than a single mechanism is required to account for the nonlinear sorption of both nonpolar and polar compounds at low C(e)/S(w). Mechanistic processes consistent with these observations and with soil surface areas are discussed along with other suggested models. Some important consequences of the nonlinear competitive sorption to the behavior of contaminants in natural systems are discussed.A number of conceptual models was postulated to account for the nonlinear solute sorption on soils of significant soil organic matter. A series of single-solute and binary-route sorption data was obtained representing samples of polar compounds of substituted ureas and phenolic compounds, and of nonpolar compounds of EDB and trichloroethylene on a peat soil and a mineral on a Woodburn soil. The nonlinear sorption capacities are greater for polar solutes than for nonpolar solutes and the peat soil shows a greater effect than the Woodburn soil.

Publication Year 1998
Title Deviations from sorption linearity on soils of polar and nonpolar organic compounds at low relative concentrations
DOI 10.1021/es970608g
Authors C. T. Chiou, D. E. Kile
Publication Type Article
Publication Subtype Journal Article
Series Title Environmental Science & Technology
Index ID 70020635
Record Source USGS Publications Warehouse
USGS Organization Toxic Substances Hydrology Program