Skip to main content
U.S. flag

An official website of the United States government

Estimated water use and availability in the Pawcatuck Basin, southern Rhode Island and southeastern Connecticut, 1995-99

July 1, 2004

In 1988, the Pawcatuck Basin (302.4 square miles) in southern Rhode Island (245.3 square miles) and southeastern Connecticut (57.12 square miles) was defined as a sole-source aquifer for 14 towns in southern Rhode Island and 4 towns in southeastern Connecticut. To determine water use and availability, the six subbasins in the Pawcatuck Basin were delineated on the basis of the surface- and ground-water system drainage areas. From 1995 through 1999, five major water suppliers in the basin withdrew an average of 6.768 million gallons per day from the aquifers. The estimated water withdrawals from minor water suppliers during the study period were 0.099 million gallons per day. Self-supplied domestic, industrial, commercial, and agricultural withdrawals from the basin averaged 4.386 million gallons per day. Water use in the basin averaged 7.401 million gallons per day. The average return flow in the basin was 7.855 million gallons per day, which included effluent from permitted facilities and self-disposed water users.

The PART program, a computerized hydrographseparation application, was used for five selected index streamgaging stations to determine water availability on the basis of the 75th, 50th, and 25th percentiles of the total base flow, the base flow minus the 7-day, 10-year flow criteria, and the base flow minus the Aquatic Base Flow criteria at the index stations. The differences in the surface- and ground-water system drainage areas in the summer were applied to the water availability calculated at the index stations and subbasins. The base-flow contributions from sand and gravel deposits at the index stations were computed for June, July, August, and September, and applied to the percentage of surficial deposits at each index station.

The base-flow contributions were converted to a per unit area at the station for the till, and for the sand and gravel deposits, and applied to the subbasins. The statistics used to estimate the gross yield of base flow, as well as subtracting out the two low-flow criteria, resulted in various wateravailability values at each index station, which were present in the subbasin after applying the per unit area rates from the index station. The results from the Chipuxet and Arcadia streamgaging stations were lowest in September at the 75th and 25th percentiles, and August flows were lowest for the summer at the 50th percentile. For the other three index stations, September flows were the lowest for the summer.

Because water withdrawals and use are greater during the summer than other times of the year, water availability in June, July, August, and September was assessed and compared to water withdrawals in the basin and subbasins. The ratios were calculated by using the water-availability flow scenarios at the 75th, 50th, and 25th percentiles for the subbasins, which are based on total water available from base-flow contributions from till deposits and sand and gravel deposits in the subbasins. For the study period, the withdrawals in August were higher than the other summer months. The ratios were close to one in August for the estimated gross yield and 7-day, 10-year flow criterion, and were close to one in September for the estimated Aquatic Base Flow criterion water-availability scenarios in the Pawcatuck Basin. The closer the ratio is to one, the closer the withdrawals are to the estimated water available, and the net water available decreases.

To determine the effects of streamflow depletion from continuous water withdrawals, the program STRMDEPL was used to simulate public wells and well fields at a constant pumping rate based on the 1999 summer average for each withdrawal, over a period of 180 days. The streamflow depletion was 86, 95, 93, 96, and 98 percent at 30 days for Kingston wells 1 and 2, Westerly well fields 1 and 2, and well 3, respectively.

A long-term hydrologic budget was calculated for the Pawcatuck Basin to identify and assess the basin and subbasin inflow and outflows. The water withdrawals and return flows used in the budget were from 1995 through 1999. For the hydrologic budget, it was assumed that inflow equals outflow, which resulted in 723.1 million gallons per day in the basin. The estimated inflows from precipitation and water return flow were 99 and 1 percent in the basin, respectively. The estimated outflows from evapotranspiration, streamflow, and water withdrawals were 43, 56, and 1 percent, respectively.

Publication Year 2004
Title Estimated water use and availability in the Pawcatuck Basin, southern Rhode Island and southeastern Connecticut, 1995-99
DOI 10.3133/sir20045020
Authors Emily C. Wild, Mark T. Nimiroski
Publication Type Report
Publication Subtype USGS Numbered Series
Series Title Scientific Investigations Report
Series Number 2004-5020
Index ID sir20045020
Record Source USGS Publications Warehouse