Skip to main content
U.S. flag

An official website of the United States government

An exsolution silica-pump model for the origin of myrmekite

January 1, 1993

Myrmekite, as defined here, is the microscopic intergrowth between vermicular quartz and modestly anorthitic plagioclase (calcic albite-oligoclase), intimately associated with potassium feldspar in plutonic rocks of granitic composition. Hypotheses previously invoked in explanation of myrmekite include: (1) direct crystallization; (2) replacement; (3) exsolution. The occurrence of myrmekite in paragneisses and its absence in rocks devold of discrete grains of potassium feldspar challenge those hypotheses based on direct crystallization or replacement. However, several lines of evidence indicate that myrmekite may in fact originate in response to kinetic effects associated with the exsolution of calcic alkali feldspar into discrete potassium feldspar and plagioclase phases. Exsolution of potassium feldspar system projected from [AlSi2O8] involves the exchange CaAlK-1Si-1, in which the AlSi-1 tetrahedral couple is resistant to intracrystalline diffusion. By contrast, diffusion of octahedral K proceeds relatively easily where it remains uncoupled to the tetrahedral exchange. We suggest here that where the ternary feldspar system is open to excess silica, the exchange reaction that produces potassium feldspar in the ternary plane is aided by the net-transfer reaction K+Si=Orthoclase, leaving behind indigenous Si that reports as modal quartz in the evolving plagioclase as the CaAl component is concomitantly incorporated in this same phase. Thus silica is "pumped" into the reaction volume from a "silica reservoir", a process that enhances redistribution of both Si and Al through the exsolving ternary feldspar. ?? 1993 Springer-Verlag.

Publication Year 1993
Title An exsolution silica-pump model for the origin of myrmekite
DOI 10.1007/BF00712978
Authors R. O. Castle, D.H. Lindsley
Publication Type Article
Publication Subtype Journal Article
Series Title Contributions to Mineralogy and Petrology
Index ID 70018349
Record Source USGS Publications Warehouse