Skip to main content
U.S. flag

An official website of the United States government

The extraordinary radar echoes from Europa, Ganymede, and Callisto: A geological perspective

January 1, 1990

This outline of plausible geologic explanations for the icy Galilean satellites' radar properties takes into consideration electromagnetic scattering models for the echoes, available empirical and theoretical information about regolith formation, and ice physics. The strange radar signatures arise because (1) ice is electrically different from silicates and/or (2) icy regoliths contain bulk-density (and hence refractive-index) structures absent within silicate regoliths. Ice's relatively high radar-frequency transparency compared with that of silicates permits longer photon path lengths, deeper radar sounding, and a greater number of scattering events. Consequently, scattering mechanisms that cannot contribute significantly to lunar echoes can dominate icy-satellite echoes. Possible phenomena unique to icy regoliths include (1) smoothing out of discontinuities between solid ejecta fragments and more porous surroundings under the action of thermal annealing to form refraction-scattering (RS) “lenses” and (2) formation of density enhancements in the shape of crater floors that result in RS and/or total internal reflection (TIR). In either case, high-order multiple scattering is more likely to be responsible for the echoes than low-order scattering. Radar/radio observations can constrain the order of the scattering and the scale of the structures responsible for the echoes but might not determine whether TIR or RS dominates the scattering. Multiwavelength investigations of the degree of correlation between radar properties and geologic terrain type should prove most useful, because inter- and intrasatellite variations in radar properties probably correspond to variations in ice purity, regolith thickness, and regolith thermal history and age.

    Publication Year 1990
    Title The extraordinary radar echoes from Europa, Ganymede, and Callisto: A geological perspective
    DOI 10.1016/0019-1035(90)90121-O
    Authors S.J. Ostro, E.M. Shoemaker
    Publication Type Article
    Publication Subtype Journal Article
    Series Title Icarus
    Index ID 70016218
    Record Source USGS Publications Warehouse