Fluxes of metals to the top and bottom surfaces of a manganese nodule were determined by combining radiochemical (230Th, 231Pa, 232Th, 238U, 234U) and detailed chemical data. The top of the nodule had been growing in its collected orientation at 4.7 mm Myr-1 for at least 0.5 Myr and accreting Mn at 200 ??g cm-2 kyr-1. The bottom of the nodule had been growing in its collected orientation at about 12 mm Myr-1 for at least 0.3 Myr and accreting Mn at about 700 ??g cm-2 yr-1. Although the top of the nodule was enriched in iron relative to the bottom, the nodule had been accreting Fe 50% faster on the bottom. 232Th was also accumulating more rapidly in the bottom despite a 20-fold enrichment of 230Th on the top. The distribution of alpha-emitting nuclides calculated from detailed radiochemical measurements matched closely the pattern revealed by 109-day exposures of alpha-sensitive film to the nodule. However, the shape and slope of the total alpha profile with depth into the nodule was affected strongly by 226Ra and 222Rn migrations making the alpha-track technique alone an inadequate method of measuring nodule growth rates. Diffusion of radium in the nodule may have been affected by diagenetic reactions which produce barite, phillipsite and todorokite within 1 mm of the nodule surface; however, our sampling interval was too broad to document the effect. We have not been able to resolve the importance of nodule diagenesis on the gross chemistry of the nodule. ?? 1981.
Citation Information
Publication Year | 1981 |
---|---|
Title | Fluxes of metals to a manganese nodule: Radiochemical, chemical, structural, and mineralogical studies |
Authors | W.S. Moore, T.-L. Ku, J.D. Macdougall, V.M. Burns, R. Burns, J. Dymond, M.W. Lyle, D. Z. Piper |
Publication Type | Article |
Publication Subtype | Journal Article |
Series Title | Earth and Planetary Science Letters |
Index ID | 70012027 |
Record Source | USGS Publications Warehouse |